hdu 1576 A/B(拓展欧几里得)
A/B
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7310 Accepted Submission(s):
5798
= 1)。
每组数据有两个数n(0 <= n <
9973)和B(1 <= B <= 10^9)。
1000 53
87 123456789
6060
解题思路:
(1)n=A%9973,则n=A-A/9973*9973。又A/B=x,则A=Bx。所以Bx-A/9973*9973=n。即Bx-9973y=n。
到这里我们可以发现:只要求出x的值,即可算出x%9973,也就是(A/B)%9973了。顺利解决了! gcd(a,b) = ax + by;
(2)如何求出x呢?题目的输入是n和B,利用扩展欧几里德算法可求出gcd(B,9973)=Bx1+9973y1=1的x1,y1。
等式两边同乘以n,得B(nx1)-9973(-ny1)=n(nx1=x.-ny1=y).可知nx1就是Bx-9973y=n的解了!!!即x=nx1。
(3)对于(2)得到的x可能是负数,由题这显然是不正确的,如果是负数则加上9973再与n相乘后%9973即可得到正确结果。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <algorithm> #define INF 0x7fffffff
#define EPS 1e-12
#define MOD 1000000007
#define PI 3.141592653579798
#define N 100000 using namespace std; typedef long long LL; LL e_gcd(LL a, LL b, LL &x, LL &y)
{
LL d = a;
if (b != )
{
d = e_gcd(b, a%b, y, x);
y -= a / b * x;
}
else
{
x = ; y = ;
}
return d;
} LL cal(LL a, LL b, LL c)
{
LL x, y;
LL gcd = e_gcd(a, b, x, y);
if (c%gcd != ) return -;
x *= c / gcd;
b /= gcd;
if (b < ) b = -b;
LL ans = x % b;
if (ans <= ) ans += b;
return ans;
} int main()
{
LL n, b, t;
cin >> t;
while (t--)
{
scanf("%I64d%I64d", &n, &b);
LL ans = cal(b, , n);
if (ans == -) printf("Impossible\n");
else printf("%lld\n", ans);
}
return ;
}
hdu 1576 A/B(拓展欧几里得)的更多相关文章
- NOIP2012拓展欧几里得
拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- POJ1061 青蛙的约会-拓展欧几里得
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...
- BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)
污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...
- BZOJ-1407 Savage 枚举+拓展欧几里得(+中国剩余定理??)
zky学长实力ACM赛制测试,和 大新闻(YveH) 和 华莱士(hjxcpg) 组队...2h 10T,开始 分工我搞A,大新闻B,华莱士C,于是开搞: 然而第一题巨鬼畜,想了40min发现似乎不可 ...
- poj2891 拓展欧几里得
//Accepted 164 KB 16 ms //拓展欧几里得 //m=a1*x+b1 --(1) //m=a2*(-y)+b2 --(2) //->a1*x+a2*y=b2-b1 //由欧几 ...
- [zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)
Power of Fibonacci Time Limit: 5 Seconds Memory Limit: 65536 KB In mathematics, Fibonacci numbe ...
- uva 10548 - Find the Right Changes(拓展欧几里得)
题目链接:uva 10548 - Find the Right Changes 题目大意:给定A,B,C,求x,y,使得xA+yB=C,求有多少种解. 解题思路:拓展欧几里得,保证x,y均大于等于0, ...
随机推荐
- ElementTree之Xml文档处理
ElementTree: 表示整个XML层级结构 Element: 表示树形结构中所有的父节点 SubElement: 表示树形结构中所有的子节点 有些节点既是父节点,又是子节点 下面来看下这两个类的 ...
- SVM之解决线性不可分
SVM之问题形式化 SVM之对偶问题 SVM之核函数 >>>SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之核函数介绍了通过计算样本核函数,实际上将样本映射 ...
- operator[],识别读操作和写操作
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
- LeetCode OJ:Implement Queue using Stacks(栈实现队列)
比较典型的一个题目,easy,不过可以有许多实现方式. 这里用的方式是每次pop完成之后再将stack2中的内容立即倒回stack1中.但是其他的实现也可以不是这样,可以是需要push的时候检查再,如 ...
- win10下安装VS2005运行程序出现0x000007b错误的解决方法
项目工程一运行就报错...真心坑... 方法如下: 1.安装DirectX 9.0c 形成原因是因为DirectX 9.0被损坏, 只需要安装即可. 如果有电脑管家的.在电脑管家里面搜索“Direct ...
- 密钥库文件格式[keystore]代码
密钥库文件格式[keystore]代码 格式 : JKS 扩展名 : .jks/.ks 描述 : [Java Keystore]密钥库的Java实现版本,pro ...
- 文件的copy
def mycopy(src_filename, dst_filename): try: fr = open(src_filename, "rb") try: try: fw = ...
- linux自学(九)之开始centos学习,安装数据库MariaDB
上一篇:linux自学(八)之开始centos学习,安装tomcat 数据库我们不安装mysql,我网上看了好多资料发现mysql安装比较麻烦,我们这里安装同一个父亲的产品MariaDB.驱动,端口等 ...
- Java并发--synchronized
以下是本文的目录大纲: 一.什么时候会出现线程安全问题? 二.如何解决线程安全问题? 三.synchronized同步方法或者同步块 转载原文链接:http://www.cnblogs.com/dol ...
- webdriver元素定位
#1 通过id定位 driver.find_element_by_id("pop_setting_save").click() #2 通过name定位 driver.find_el ...