Hadoop MapReduce任务的启动分析
exec "$JAVA" $JAVA_HEAP_MAX $HADOOP_OPTS $CLASS "$@"
org.apache.hadoop.util.RunJar
public static void main(String[] args) throws Exception {
int result = ToolRunner.run(new ThisClass(), args);
System.exit(result);
}
extends Configured implements Tool
boolean success = job2.waitForCompletion(true);
public boolean waitForCompletion(boolean verbose
) throws IOException, InterruptedException,
ClassNotFoundException {
if (state == JobState.DEFINE) {
submit();
}
if (verbose) {
monitorAndPrintJob();
} else {
// get the completion poll interval from the client.
int completionPollIntervalMillis =
Job.getCompletionPollInterval(cluster.getConf());
while (!isComplete()) {
try {
Thread.sleep(completionPollIntervalMillis);
} catch (InterruptedException ie) {
}
}
}
return isSuccessful();
}
while (!isComplete() || !reportedAfterCompletion) {
if (isComplete()) {
reportedAfterCompletion = true;
} else {
Thread.sleep(progMonitorPollIntervalMillis);
}
if (status.getState() == JobStatus.State.PREP) {
continue;
}
if (!reportedUberMode) {
reportedUberMode = true;
LOG.info("Job " + jobId + " running in uber mode : " + isUber());
}
String report =
(" map " + StringUtils.formatPercent(mapProgress(), 0)+
" reduce " +
StringUtils.formatPercent(reduceProgress(), 0));
if (!report.equals(lastReport)) {
LOG.info(report);
lastReport = report;
}
TaskCompletionEvent[] events =
getTaskCompletionEvents(eventCounter, 10);
eventCounter += events.length;
printTaskEvents(events, filter, profiling, mapRanges, reduceRanges);
}
boolean success = isSuccessful();
if (success) {
LOG.info("Job " + jobId + " completed successfully");
} else {
LOG.info("Job " + jobId + " failed with state " + status.getState() +
" due to: " + status.getFailureInfo());
}
Counters counters = getCounters();
if (counters != null) {
LOG.info(counters.toString());
}
return success;
15/04/13 15:01:08 INFO mapreduce.Job: map 96% reduce 28%
15/04/13 15:01:09 INFO mapreduce.Job: map 98% reduce 28%
15/04/13 15:01:10 INFO mapreduce.Job: map 98% reduce 32%
15/04/13 15:01:13 INFO mapreduce.Job: map 100% reduce 33%
15/04/13 15:01:16 INFO mapreduce.Job: map 100% reduce 37%
15/04/13 15:01:19 INFO mapreduce.Job: map 100% reduce 46%
15/04/13 15:01:22 INFO mapreduce.Job: map 100% reduce 54%
15/04/13 15:01:25 INFO mapreduce.Job: map 100% reduce 62%
15/04/13 15:01:28 INFO mapreduce.Job: map 100% reduce 68%
15/04/13 15:01:31 INFO mapreduce.Job: map 100% reduce 71%
15/04/13 15:01:34 INFO mapreduce.Job: map 100% reduce 76%
15/04/13 15:01:35 INFO mapreduce.Job: map 100% reduce 100%
15/04/13 15:01:37 INFO mapreduce.Job: Job job_1421455790417_222365 completed successfully
15/04/13 15:01:37 INFO mapreduce.Job: Counters: 46
File System Counters
FILE: Number of bytes read=70894655
FILE: Number of bytes written=158829484
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=5151416348
HDFS: Number of bytes written=78309
HDFS: Number of read operations=1091
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
Hadoop MapReduce任务的启动分析的更多相关文章
- Hadoop MapReduce执行过程实例分析
1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程 ...
- 使用hadoop mapreduce分析mongodb数据
使用hadoop mapreduce分析mongodb数据 (现在很多互联网爬虫将数据存入mongdb中,所以研究了一下,写此文档) 版权声明:本文为yunshuxueyuan原创文章.如需转载请标明 ...
- 【Big Data - Hadoop - MapReduce】初学Hadoop之图解MapReduce与WordCount示例分析
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...
- 初学Hadoop之图解MapReduce与WordCount示例分析
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...
- Hadoop MapReduce编程 API入门系列之MapReduce多种输出格式分析(十九)
不多说,直接上代码. 假如这里有一份邮箱数据文件,我们期望统计邮箱出现次数并按照邮箱的类别,将这些邮箱分别输出到不同文件路径下. 代码版本1 package zhouls.bigdata.myMapR ...
- hadoop MapReduce Yarn运行机制
原 Hadoop MapReduce 框架的问题 原hadoop的MapReduce框架图 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobClient) ...
- 四种方案:将OpenStack私有云部署到Hadoop MapReduce环境中
摘要:OpenStack与Hadoop被誉为继Linux之后最有可能获得巨大成功的开源项目.这二者如何结合成为更猛的新方案?业内给出两种答案:Hadoop跑在OpenStack上或OpenStack部 ...
- Hadoop Mapreduce 参数 (一)
参考 hadoop权威指南 第六章,6.4节 背景 hadoop,mapreduce就如MVC,spring一样现在已经是烂大街了,虽然用过,但是说看过源码么,没有,调过参数么?调过,调到刚好能跑起来 ...
- [python]使用python实现Hadoop MapReduce程序:计算一组数据的均值和方差
这是参照<机器学习实战>中第15章“大数据与MapReduce”的内容,因为作者写作时hadoop版本和现在的版本相差很大,所以在Hadoop上运行python写的MapReduce程序时 ...
随机推荐
- C++面向对象高级编程(四)基础篇
技术在于交流.沟通,转载请注明出处并保持作品的完整性. 一.Static 二.模板类和模板函数 三.namespace 一.Static 静态成员是“类级别”的,也就是它和类的地位等同,而普通成员是“ ...
- IGMP技术总结
转载自:IGMP技术总结 本博客(http://blog.csdn.net/livelylittlefish)贴出作者(三二一.小鱼)相关研究.学习内容所做的笔记,欢迎广大朋友指正! 1. IGMP ...
- APUE学习笔记——3.文件共享与fcntl介绍
基本概念 内核使用3个数据结构描述一个打开的文件:进程表.文件表.V节点表 首先了解3种数据结构的概念 1 进程表 每一个进程有一个进程表.进程表里是一组打开的文件描述符,如标 ...
- SSH项目搭建(二)
本章讲解SSH项目需要到哪些jar包,及各个jar包的作用 一.struts2 1.下载好struts2,struts2文件夹>>>>apps>>>>a ...
- 为Java程序员金三银四精心挑选的五十道面试题与答案
1.面向对象的特征有哪些方面? [基础] 答:面向对象的特征主要有以下几个方面: 1)抽象:抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面.抽象并不打算了解全部问 ...
- my_itoa
#include <iostream> using namespace std; char *my_reverse(char* s) { char *p,*q; p=s;q=s; whil ...
- Jmeter简单的操作数据库
mysql驱动包下载地址: https://dev.mysql.com/downloads/connector/j/ 1.添加驱动配置,把下载下来的驱动配置上去 2.添加‘配置元件-用户定义的变量’, ...
- BZOJ - 3223 Tyvj 1729 文艺平衡树 (splay/无旋treap)
题目链接 splay: #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f3f3f3f ...
- HDU1576 A/B
暴力出奇迹,我就知道没取余那么正当,肯定有什么奇淫怪巧,果然5分钟A掉. #include<cstdio> #include<cstdlib> #include<iost ...
- 【Codeforces】Round #488 (Div. 2) 总结
[Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...