题目链接

  • In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query (L, R)(L \leR), we report the minimum value among A[L], A[L + 1], ..., A[R]. Note that the indices start from 1, i.e. the left-most element is A[1].

    In this problem, the array A is no longer static: we need to support another operation

    shift(i1, i2, i3,..., ik)(i1 < i2 < ... < ik, k > 1)

    we do a left ``circular shift" of A[i1], A[i2], ..., A[ik].

    For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that,shift(1, 2) yields 8, 6, 4, 5, 4, 1, 2.

    输入

    There will be only one test case, beginning with two integers n, q ( 1<=n<=100, 000, 1<=q<=250, 000), the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000, the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 100 characters, with no space characters inside. All operations are guaranteed to be valid.

    输出

    For each query, print the minimum value (rather than index) in the requested range.

    样例输入

    7 5

    6 2 4 8 5 1 4

    query(3,7)

    shift(2,4,5,7)

    query(1,4)

    shift(1,2)

    query(2,2)

    样例输出

    1

    4

    6

分析:

对于一个下标从1到n的序列,主要有两种操作,一种是query(查询)某个区间内的最小值,另一种是shift(循环左移一位)就是将这些下标对应的值循环向左移动一位,当然第一位的值会移动到最后一位。我们首先肯定是将前一位的值更改为后一位,但是在更改最后一位的时候第一位的值已经改变了,所以应该将第一位的值提前存储下来。

代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stack>
#include<math.h>
using namespace std;
int a[100009];
struct Node
{
int left;///左区间
int right;///右区间
int num;///该区间内的最小值
} node[400009]; void build(int root,int le,int ri)
{ node[root].left=le;
node[root].right=ri;
if(le==ri)///左区间与右区间相等,相当于找到了某个特定的值
{
node[root].num=a[le];
return ;
}
int mid=(le+ri)/2;
build(root*2,le,mid);
build(root*2+1,mid+1,ri);
node[root].num=min(node[root*2].num,node[root*2+1].num);
} void Update(int root,int n1,int n2)
{ if(node[root].left==n1&&node[root].right==n1)///先找到这个数字,然后把这个值更新了
{
node[root].num=n2;
return;
}
if(n1<=node[root*2].right)///该节点在左子树中
Update(root*2,n1,n2);
else if(n1>=node[root*2+1].left)///节点在右子树中
Update(root*2+1,n1,n2);
node[root].num=min(node[root*2].num,node[root*2+1].num);///取左右子树的较小值
} int Query(int root,int le,int ri)
{
if(node[root].left==le&&node[root].right==ri)///找到特定的区间,返回值
{
return node[root].num;
}
else if(node[root*2].right>=ri)///区间在左子树中
{
return Query(root*2,le,ri);
}
else if(node[root*2+1].left<=le)///区间在右子树中
{
return Query(root*2+1,le,ri);
}
else
{
int mid=(node[root].left+node[root].right)/2;///左右子树中都有
int num1=Query(root*2,le,mid);
int num2=Query(root*2+1,mid+1,ri);
return min(num1,num2);
}
} int main()
{
//freopen("1.txt","r",stdin);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
char ch[109];
build(1,1,n);
while(m--)
{
int b[1000];
int j=0;
int sum=0;
scanf(" %s",ch);
for(int i=6; ch[i]!='\0'; i++)///将每个数字提取出来
{
if(ch[i]>='0'&&ch[i]<='9')
{
sum=sum*10+ch[i]-'0';
}
else
{
if(ch[i]==','||ch[i]==')')
{
b[j++]=sum;
sum=0;
}
}
}
if(ch[0]=='q')
{
printf("%d\n",Query(1,b[0],b[1]));
}
else
{
int NUM=a[b[0]];///把第一位保存下来
for(int i=0; i<j-1; i++)///先把a数组更新了,再把树进行更新
a[b[i]]=a[b[i+1]];
a[b[j-1]]=NUM;
for(int i=0; i<j-1; i++)
{
Update(1,b[i],a[b[i]]);
}
Update(1,b[j-1],NUM);
}
}
return 0;
}

NYOJ 1012 RMQ with Shifts (线段树)的更多相关文章

  1. UVa 12299 RMQ with Shifts(线段树)

    线段树,没了.. ----------------------------------------------------------------------------------------- # ...

  2. RMQ with Shifts(线段树)

    RMQ with Shifts Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Pra ...

  3. TZOJ 4325 RMQ with Shifts(线段树查询最小,暴力更新)

    描述 In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each que ...

  4. TOJ 4325 RMQ with Shifts / 线段树单点更新

    RMQ with Shifts 时间限制(普通/Java):1000MS/3000MS     运行内存限制:65536KByte 描述 In the traditional RMQ (Range M ...

  5. nyoj 568——RMQ with Shifts——————【线段树单点更新、区间求最值】

    RMQ with Shifts 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述     In the traditional RMQ (Range Minimum Q ...

  6. RMQ问题(线段树+ST算法)

    转载自:http://kmplayer.iteye.com/blog/575725 RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ ...

  7. BZOJ 1012: [JSOI2008]最大数maxnumber 线段树

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1012 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作.语法:Q L 功能: ...

  8. NYOJ 116 士兵杀敌 (线段树,区间和)

    题目链接:NYOJ 116 士兵杀敌 士兵杀敌(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:5 描写叙述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的 ...

  9. 1012: [JSOI2008]最大数maxnumber 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=1012 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数 ...

随机推荐

  1. 小程序解密 encryptedData 获取 unionID 等信息

    index.php <?php include_once "wxBizDataCrypt.php"; // $appid 由小程序微信官方后台获取 $appid = 'wx4 ...

  2. 【转】mysql force Index 强制索引

    其他强制操作,优先操作如下: mysql常用的hint 对于经常使用oracle的朋友可能知道,oracle的hint功能种类很多,对于优化sql语句提供了很多方法.同样,在mysql里,也有类似的h ...

  3. 利用css3的text-shadow属性实现文字阴影乳白效果

    现在CSS3+html5的网页应用的越来越广泛了.很多网页中的字体同样可以用CSS3来实现炫酷的效果. 下面就介绍一下利用css3的text-shadow属性实现文字阴影乳白效果.这是在设计达人上面看 ...

  4. CODE FESTIVAL 2016 qualA Grid and Integers

    划年代久远的水 题意 有一个R*C的棋盘,要求在每个格子上填一个非负数,使得对任意一个2*2的正方形区域,左上角和右下角的数字之和等于左下角和右上角的数字之和.有一些格子已经被填上了数字,问现在能否满 ...

  5. 【数据库_Mysql】MySQL—修改表时给表添加联合主键约束

      添加语法如下: “ALTER TABLE table_name ADD CONSTRAINT pk_table_name PRIMARY KEY(列名1,列名2):” [示例1]假设订房信息表(O ...

  6. [codeforces464D]World of Darkraft - 2 概率期望

    D. World of Darkraft - 2 time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  7. php+memcached缓存技术实例

    一.memcached 简介 在很多场合,我们都会听到 memcached 这个名字,但很多同学只是听过,并没有用过或实际了解过,只知道它是一个很不错的东东.这里简单介绍一下,memcached 是高 ...

  8. 据说要写一个CTSC&APIO的收获

    就不写流水帐了,总的写一下吧.先从最浅显的地方开始——知识.大概被普及了一发带花树,算上自己的考试,还被普及了一发洲阁筛.当然更多的还是对于一些知识的强化,比如:乱搞(这东西真是太重点了啊).DP.数 ...

  9. 什么是end-to-end神经网络?

    https://www.zhihu.com/question/51435499 来源:知乎著作权归作者所有. 国立台湾大学的李宏毅教授在其机器学习课程中有讲到深度神经网络的 End-to-end Le ...

  10. (转)IOS 的一些资源汇总

      UI界面类项目: Panoramagl —— 720全景展示 Panorama viewer library for iPhone, iPad and iPod touch MBProgressH ...