题目链接

  • In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query (L, R)(L \leR), we report the minimum value among A[L], A[L + 1], ..., A[R]. Note that the indices start from 1, i.e. the left-most element is A[1].

    In this problem, the array A is no longer static: we need to support another operation

    shift(i1, i2, i3,..., ik)(i1 < i2 < ... < ik, k > 1)

    we do a left ``circular shift" of A[i1], A[i2], ..., A[ik].

    For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that,shift(1, 2) yields 8, 6, 4, 5, 4, 1, 2.

    输入

    There will be only one test case, beginning with two integers n, q ( 1<=n<=100, 000, 1<=q<=250, 000), the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000, the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 100 characters, with no space characters inside. All operations are guaranteed to be valid.

    输出

    For each query, print the minimum value (rather than index) in the requested range.

    样例输入

    7 5

    6 2 4 8 5 1 4

    query(3,7)

    shift(2,4,5,7)

    query(1,4)

    shift(1,2)

    query(2,2)

    样例输出

    1

    4

    6

分析:

对于一个下标从1到n的序列,主要有两种操作,一种是query(查询)某个区间内的最小值,另一种是shift(循环左移一位)就是将这些下标对应的值循环向左移动一位,当然第一位的值会移动到最后一位。我们首先肯定是将前一位的值更改为后一位,但是在更改最后一位的时候第一位的值已经改变了,所以应该将第一位的值提前存储下来。

代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stack>
#include<math.h>
using namespace std;
int a[100009];
struct Node
{
int left;///左区间
int right;///右区间
int num;///该区间内的最小值
} node[400009]; void build(int root,int le,int ri)
{ node[root].left=le;
node[root].right=ri;
if(le==ri)///左区间与右区间相等,相当于找到了某个特定的值
{
node[root].num=a[le];
return ;
}
int mid=(le+ri)/2;
build(root*2,le,mid);
build(root*2+1,mid+1,ri);
node[root].num=min(node[root*2].num,node[root*2+1].num);
} void Update(int root,int n1,int n2)
{ if(node[root].left==n1&&node[root].right==n1)///先找到这个数字,然后把这个值更新了
{
node[root].num=n2;
return;
}
if(n1<=node[root*2].right)///该节点在左子树中
Update(root*2,n1,n2);
else if(n1>=node[root*2+1].left)///节点在右子树中
Update(root*2+1,n1,n2);
node[root].num=min(node[root*2].num,node[root*2+1].num);///取左右子树的较小值
} int Query(int root,int le,int ri)
{
if(node[root].left==le&&node[root].right==ri)///找到特定的区间,返回值
{
return node[root].num;
}
else if(node[root*2].right>=ri)///区间在左子树中
{
return Query(root*2,le,ri);
}
else if(node[root*2+1].left<=le)///区间在右子树中
{
return Query(root*2+1,le,ri);
}
else
{
int mid=(node[root].left+node[root].right)/2;///左右子树中都有
int num1=Query(root*2,le,mid);
int num2=Query(root*2+1,mid+1,ri);
return min(num1,num2);
}
} int main()
{
//freopen("1.txt","r",stdin);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
char ch[109];
build(1,1,n);
while(m--)
{
int b[1000];
int j=0;
int sum=0;
scanf(" %s",ch);
for(int i=6; ch[i]!='\0'; i++)///将每个数字提取出来
{
if(ch[i]>='0'&&ch[i]<='9')
{
sum=sum*10+ch[i]-'0';
}
else
{
if(ch[i]==','||ch[i]==')')
{
b[j++]=sum;
sum=0;
}
}
}
if(ch[0]=='q')
{
printf("%d\n",Query(1,b[0],b[1]));
}
else
{
int NUM=a[b[0]];///把第一位保存下来
for(int i=0; i<j-1; i++)///先把a数组更新了,再把树进行更新
a[b[i]]=a[b[i+1]];
a[b[j-1]]=NUM;
for(int i=0; i<j-1; i++)
{
Update(1,b[i],a[b[i]]);
}
Update(1,b[j-1],NUM);
}
}
return 0;
}

NYOJ 1012 RMQ with Shifts (线段树)的更多相关文章

  1. UVa 12299 RMQ with Shifts(线段树)

    线段树,没了.. ----------------------------------------------------------------------------------------- # ...

  2. RMQ with Shifts(线段树)

    RMQ with Shifts Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Pra ...

  3. TZOJ 4325 RMQ with Shifts(线段树查询最小,暴力更新)

    描述 In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each que ...

  4. TOJ 4325 RMQ with Shifts / 线段树单点更新

    RMQ with Shifts 时间限制(普通/Java):1000MS/3000MS     运行内存限制:65536KByte 描述 In the traditional RMQ (Range M ...

  5. nyoj 568——RMQ with Shifts——————【线段树单点更新、区间求最值】

    RMQ with Shifts 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述     In the traditional RMQ (Range Minimum Q ...

  6. RMQ问题(线段树+ST算法)

    转载自:http://kmplayer.iteye.com/blog/575725 RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ ...

  7. BZOJ 1012: [JSOI2008]最大数maxnumber 线段树

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1012 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作.语法:Q L 功能: ...

  8. NYOJ 116 士兵杀敌 (线段树,区间和)

    题目链接:NYOJ 116 士兵杀敌 士兵杀敌(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:5 描写叙述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的 ...

  9. 1012: [JSOI2008]最大数maxnumber 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=1012 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数 ...

随机推荐

  1. PHP 生成条形码

    <?php class BarCode128 { const STARTA = 103; const STARTB = 104; const STARTC = 105; const STOP = ...

  2. sysbench 环境安装,压测mysql

    源码路径:https://github.com/akopytov/sysbench 版本linux 6.8sysbench 0.5mysql 5.6.29 1.安装pip略 2.pip 安装bzr p ...

  3. C# 开发人员的函数式编程

    摘要:作为一名 C# 开发人员,您可能已经在编写一些函数式代码而没有意识到这一点.本文将介绍一些您已经在C#中使用的函数方法,以及 C# 7 中对函数式编程的一些改进. 尽管 .NET 框架的函数式编 ...

  4. p2 钢体

    钢体可以控制沿x方向移动,沿y方向移动, 不旋转等. fixedX, fixedY, fixedRotaion 1)addBody和removeBody:World类中的addBody()和remov ...

  5. Linux服务器ping不通域名出现的unknown host 错误解决办法

    "ping: unknown host www.baidu.com" 解决方法 如果某台Linux服务器ping不通域名, 如下提示: # ping www.baidu.compi ...

  6. 深入解析ThreadLocal类

    先了解一下ThreadLocal类提供的几个方法: public T get() { } public void set(T value) { } public void remove() { } p ...

  7. 【前端学习笔记01】JavaScript源生判断数据类型的方法

    原始类型(值类型):Undefined.Null.Number.String.Boolean: 对象类型(引用类型):Object: typeof  可以识别标准类型,null外(返回Object): ...

  8. 【Java】list转换json的中文乱码问题

    添加如图红框内容

  9. 题解 P1765 【手机_NOI导刊2010普及(10)】

    说实话,打表真的很累! 所以小金羊又开始暴力出奇迹了! 这个题解适合初学者使用. 知识点:string里面的str.find()函数: 可以查找字符串和字符,有就返回位置(开头是0), 没有就返回st ...

  10. VSS2005清除管理员密码

    1.下载工具ultraedit 2.登录到服务器,找到VSS库文件夹,data\um.dat 3.复制到自己桌面,用ultraedit打开,进入 引用内容 00000080h: 55 55 03 29 ...