好久没写斜率优化板子都忘了,

硬是交了十几遍。。

推一下柿子就能得到答案为

\[m*\sum x^2-(\sum x)^2
\]

后面是个定值,前面简单dp,斜率优化一下就行了。

\(f[i][j]=f[k][j-1]+sum[i]*sum[i]-2sum[i]sum[k]+sum[k]*sum[k]\)

\(-f[k][j-1]-sum[k]*sum[k]=-2sum[i]sum[k]-f[i][j]+sum[i]*sum[i]\)

#include <cstdio>
#include <cstring>
const int MAXN = 3010;
int n, m;
int f[MAXN][MAXN], sum[MAXN];
inline double k(int j, int i, int k){
return ((double)f[i][j - 1] + sum[i] * sum[i] - f[k][j - 1] - sum[k] * sum[k]) / ((double)sum[i] - sum[k]);
}
inline int min(int a, int b){
return a > b ? b : a;
}
int q[MAXN], head, tail;
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i){
scanf("%d", &sum[i]); sum[i] += sum[i - 1];
}
memset(f, 31, sizeof f);
for(int i = 1; i <= n; ++i) f[i][1] = sum[i] * sum[i];
for(int j = 2; j <= m; ++j){
head = tail = 0;
for(int i = 1; i <= n; ++i){
while(head < tail && k(j, q[head], q[head + 1]) < 2 * sum[i]) ++head;
int K = q[head];
f[i][j] = f[K][j - 1] + (sum[i] - sum[K]) * (sum[i] - sum[K]);
while(head < tail && k(j, q[tail - 1], q[tail]) >= k(j, q[tail], i)) --tail;
q[++tail] = i;
}
}
/*for(int j = 1; j <= m; ++j)
for(int i = 1; i <= n; ++i)
for(int k = 0; k < i; ++k)
f[i][j] = min(f[i][j], f[k][j - 1] + (sum[i] - sum[k]) * (sum[i] - sum[k]));*/
printf("%d\n", m * f[n][m] - sum[n] * sum[n]);
return 0;
}

【洛谷 P4072】 [SDOI2016]征途(斜率优化)的更多相关文章

  1. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  2. 洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)

    洛谷题目传送门 一开始肯定要把题目要求的式子给写出来 我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\) 题目要乘\ ...

  3. 洛谷P4072 [SDOI2016]征途(斜率优化)

    传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...

  4. [洛谷P4072] SDOI2016 征途

    问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

  5. 洛谷4072 SDOI2016征途 (斜率优化+dp)

    首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...

  6. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  7. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  8. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  9. 【BZOJ4518】[Sdoi2016]征途 斜率优化

    [BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...

  10. 【bzoj4518】[Sdoi2016]征途 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6812435.html 题目描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界 ...

随机推荐

  1. 安装php先行库

    libmcrypt libconv mhash  ./configure --prefix=/usr/local mcrypt 安装完成后在当前目录还要 /sbin/ldconfig ./config ...

  2. 树形结构的数据库表Schema设计-基于左右值编码

    树形结构的数据库表Schema设计 程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门.栏目结构.商品分类等等,通常而言,这些树状结构需要借助于数据库完 成持久化.然而目前的 ...

  3. PHP中访问控制修饰符

    访问控制修饰符 形式: class  类名{ 访问控制修饰符  属性或方法定义: } 有3个访问修饰符: public公共的:在所有位置都可访问(使用). protected受保护的:只能再该类内部和 ...

  4. C++解析(27):数组、智能指针与单例类模板

    0.目录 1.数组类模板 1.1 类模板高效率求和 1.2 数组类模板 1.3 堆数组类模板 2.智能指针类模板 2.1 使用智能指针 2.2 智能指针类模板 3.单例类模板 3.1 实现单例模式 3 ...

  5. 深入理解JVM一JVM内存模型

    前言 JVM一直是java知识里面进阶阶段的重要部分,如果希望在java领域研究的更深入,则JVM则是如论如何也避开不了的话题,本系列试图通过简洁易读的方式,讲解JVM必要的知识点. 一.运行流程 我 ...

  6. [TJOI2008]彩灯 线性基

    题面 题面 题解 题意:给定n个01串,求互相异或能凑出多少不同的01串. 线性基的基础应用. 对于线性基中的01串,如果我们取其中一些凑成一个新的01串,有一个重要的性质:任意2个不同方案凑出的01 ...

  7. [TJOI2015]线性代数 网络流

    题面 题面 题解 先化一波式子: \[D = (A \cdot B - C)A^T \] \[ = \sum_{i = 1}^{n}H_{1i}\cdot A^T_{i1}\] \[H_{1i} = ...

  8. DotNet,PHP,Java的数据库连接代码大全(带演示代码)

    C#数据库连接字符串 Web.config文件 <connectionStrings> <!--SQLServer数据库连接--> <add name="con ...

  9. jQuery时间轴

    常见的时间轴导航 横向时间轴

  10. Codeforces 671D. Roads in Yusland(树形DP+线段树)

    调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...