好久没写斜率优化板子都忘了,

硬是交了十几遍。。

推一下柿子就能得到答案为

\[m*\sum x^2-(\sum x)^2
\]

后面是个定值,前面简单dp,斜率优化一下就行了。

\(f[i][j]=f[k][j-1]+sum[i]*sum[i]-2sum[i]sum[k]+sum[k]*sum[k]\)

\(-f[k][j-1]-sum[k]*sum[k]=-2sum[i]sum[k]-f[i][j]+sum[i]*sum[i]\)

#include <cstdio>
#include <cstring>
const int MAXN = 3010;
int n, m;
int f[MAXN][MAXN], sum[MAXN];
inline double k(int j, int i, int k){
return ((double)f[i][j - 1] + sum[i] * sum[i] - f[k][j - 1] - sum[k] * sum[k]) / ((double)sum[i] - sum[k]);
}
inline int min(int a, int b){
return a > b ? b : a;
}
int q[MAXN], head, tail;
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i){
scanf("%d", &sum[i]); sum[i] += sum[i - 1];
}
memset(f, 31, sizeof f);
for(int i = 1; i <= n; ++i) f[i][1] = sum[i] * sum[i];
for(int j = 2; j <= m; ++j){
head = tail = 0;
for(int i = 1; i <= n; ++i){
while(head < tail && k(j, q[head], q[head + 1]) < 2 * sum[i]) ++head;
int K = q[head];
f[i][j] = f[K][j - 1] + (sum[i] - sum[K]) * (sum[i] - sum[K]);
while(head < tail && k(j, q[tail - 1], q[tail]) >= k(j, q[tail], i)) --tail;
q[++tail] = i;
}
}
/*for(int j = 1; j <= m; ++j)
for(int i = 1; i <= n; ++i)
for(int k = 0; k < i; ++k)
f[i][j] = min(f[i][j], f[k][j - 1] + (sum[i] - sum[k]) * (sum[i] - sum[k]));*/
printf("%d\n", m * f[n][m] - sum[n] * sum[n]);
return 0;
}

【洛谷 P4072】 [SDOI2016]征途(斜率优化)的更多相关文章

  1. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  2. 洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)

    洛谷题目传送门 一开始肯定要把题目要求的式子给写出来 我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\) 题目要乘\ ...

  3. 洛谷P4072 [SDOI2016]征途(斜率优化)

    传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...

  4. [洛谷P4072] SDOI2016 征途

    问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

  5. 洛谷4072 SDOI2016征途 (斜率优化+dp)

    首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...

  6. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  7. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  8. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  9. 【BZOJ4518】[Sdoi2016]征途 斜率优化

    [BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...

  10. 【bzoj4518】[Sdoi2016]征途 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6812435.html 题目描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界 ...

随机推荐

  1. 在linux下编译线程程序undefined reference to `pthread_create'

    由于是Linux新手,所以现在才开始接触线程编程,照着GUN/Linux编程指南中的一个例子输入编译,结果出现如下错误:undefined reference to 'pthread_create'u ...

  2. PHP面向对象之抽象类,抽象方法

    抽象类,抽象方法 抽象类: 是一个不能实例化的类: 定义形式: abstract  class  类名{} 为什么需要抽象类: 它是为了技术管理而设计! 抽象方法: 是一个只有方法头,没有方法体的方法 ...

  3. pip使用国内镜像源

    windows版 1.在windows文件管理器中,输入 %APPDATA% 2.在该目录下新建pip文件夹,然后到pip文件夹里面去新建个pip.ini文件 3.在新建的pip.ini文件中输入以下 ...

  4. 我以前不知道的 Session

    之前只知道 Session 是服务器与客户端的一个会话,有默认过期时间,是服务器端的技术,与之对应的是 Cookie 技术,是客户端技术. 下面的几点是之前不知道的:[或者是忘了] 1 . Sessi ...

  5. 第81天:jQuery 插件使用方法

    在追求页面互动效果的时代,大家都想把页面效果做的美轮美奂,这一切都离不开前端技术脚本Javascript,而最近常被人用到的Javascript库文件则是jQuery.  jQuery的使用具体步骤如 ...

  6. .net MVC中使用angularJs刷新页面数据列表

    使用angularjs的双向绑定功能,定时刷新页面上数据列表(不是刷新网页,通过ajax请求只刷新数据列表部分页面),实例如下: @{ Layout = null; } <!DOCTYPE ht ...

  7. bzoj3622-已经没有什么好害怕的的了

    题意 给出两个长度为 \(n\) 的数列 \(a,b\) ,\(2n\) 个数都互不相同,求有多少种对应方式使得 \(a_i>b_i\) 的个数比 \(a_i<b_i\) 的个数恰好多 \ ...

  8. bug:margin合并

    demo1和demo2存在margin合并问题:外边距合并指的是,当两个垂直外边距相遇时,它们将形成一个外边距.合并后的外边距的高度等于两个发生合并的外边距的高度中的较大者.弥补方案:bfc; 添加一 ...

  9. The Largest Clique UVA - 11324( 强连通分量 + dp最长路)

    这题  我刚开始想的是  缩点后  求出入度和出度为0 的点  然后统计个数  用总个数 减去 然而 这样是不可以的  画个图就明白了... 如果  减去度为0的点  那么最后如果出现这样的情况是不可 ...

  10. 【MVVM Dev】多个具有依赖性质的ComboBox对数据的过滤

    一.前言 在界面编程中,我们常常会遇到具有依赖性质的ComboBox框,比如最常见的: 省/直辖市 => 地级市/区 => 区/街道 今天就说一下在WPF的MVVM模式中如何实现该功能 二 ...