这里不讲定量的公式。(由于我也没全然弄明确。不想误人子弟)仅仅谈高速定性理解。

隐Markov模型原理

隐Markov模型(Hidden Markov Model。HMM)的实质就是:已知几种原始分类,预測未知原始分类的观測状态的原始分类的过程。其应用是求观測状态到分类的近似最大似然预计。近似是由于理论最大的实际计算量太大,无法做,所以找了个优化求近似最优的方法,简称EM算法。

一个直观理解的样例:

问题题干:

设某人在3个装有红白两种颜色球的盒子中,任取一个盒子,然后在此盒子中连续抽取m次,每次抽取且记录颜色之后放回盒子里。假定各个盒子的内容分别为:

         红球数        白球数      

盒1   90              10            

盒2   50              50           

盒3   40              60            

如今得到一个记录(红。红。红,红。白)(即m=5) 。可是不告诉我们球出自哪个盒子,该怎样猜測是从哪个盒子取出的观測样本呢?

问题分析:

已知三种原始分类,预測未知原始分类的观測状态(红,红。红,红,白)的原始分类的过程。每次概率是固定的,直观感受,出现该记录最大可能是出自盒1。

HMM隐Markov的基本思想就是这么简单。

略微变一下题目,如果三种盒子里抽取方式不同。即

         红球数       白球数      抽取方式

盒1   90              10            随机取。记下颜色后不放回

盒2   50              50            随机取,记下颜色后放回

盒3   40              60            随机取,记下颜色后不放回,并放入一个红球

则问题变成了盒1和盒3的每次抽取的样本概率受上次抽取状态的决定,与更之前的状态无关。

无论问题怎么变复杂。都是从已知原始分类(先验知识),根据概率理论。预測观測样本到原始分类的问题。

隐Markov模型的应用

语音识别:音素相应上例中的球

手写体汉字识别:像素相应上例中的球

实际处理过程中会先预处理,得到保持特征不变性的量,而不是简单的音素、像素。

补充

1、EM:E步骤。求期望,M步骤。求最大值。针对在測量数据不全然时,一种近似最大似然预计的统计方法。

2、隐Markov模型扩展:刚才讲的都是简单离散概率模型的隐Markov模型,实际情况能够推广到连续随机变量。典型的有正态分布、Gamma分布,或者某些混合分布等。

比方最常写在一起的GMM-HMM。即高斯混合模型-隐形马尔科夫模型。该模型即是卷积神经网络的基础。

3、GMM-HMM的语音识别应用,參考http://blog.csdn.net/abcjennifer/article/details/27346787

4、GMM即多变量的高斯模型。在机器学习的异常检測中也用到。能够參考http://blog.csdn.net/lonelyrains/article/details/49861491

HMM隐Markov模型的原理及应用建模的更多相关文章

  1. Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结

    Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的 ...

  2. 隐马尔科夫模型 HMM(Hidden Markov Model)

    本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...

  3. HMM隐马尔科夫算法(Hidden Markov Algorithm)初探

    1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...

  4. HMM隐马尔可夫模型来龙去脉(一)

    目录 隐马尔可夫模型HMM学习导航 一.认识贝叶斯网络 1.概念原理介绍 2.举例解析 二.马尔可夫模型 1.概念原理介绍 2.举例解析 三.隐马尔可夫模型 1.概念原理介绍 2.举例解析 四.隐马尔 ...

  5. 机器学习-HMM隐马尔可夫模型-笔记

    HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概 ...

  6. HMM隐马尔可夫模型来龙去脉(二)

    目录 前言 预备知识 一.估计问题 1.问题推导 2.前向算法/后向算法 二.序列问题 1.问题推导 2.维特比算法 三.参数估计问题 1.问题推导 2.期望最大化算法(前向后向算法) 总结 前言 H ...

  7. HMM隐马尔可夫模型(词语粘合)

    HMM用于自然语言处理(NLP)中文分词,是用来描述一个含有隐含未知参数的马尔可夫过程,其目的是希望通过求解这些隐含的参数来进行实体识别,说简单些也就是起到词语粘合的作用. HMM隐马尔可夫模型包括: ...

  8. hmm隐马尔可夫真的那么难吗?

    hmm隐马尔可夫真的那么难吗? 首先上代码 这里是github上的关于hmm的:链接 概率计算问题:前向-后向算法 学习问题:Baum-Welch算法(状态未知) 预测问题:Viterbi算法 htt ...

  9. 论文阅读-使用隐马模型进行NER

    Named Entity Recognition in Biomedical Texts using an HMM Model  2004年,引用79 1.摘要 Although there exis ...

随机推荐

  1. python开发_python操作mysql数据库

    如果你还没有准备好开发环境,你不妨花上一小点时间去看看:python开发_mysqldb安装 本篇blog是有关python操作mysql数据的相关内容. 我做了一个demo: 先看运行效果: mys ...

  2. Redis-用思维导图二天搞定Redis用法。

    Redis整体面貌 Redis基本数据结构 1.String 1.1 数据结构 long len byte数组长度 long free 可用数组长度 char buff[] 数据内容 1.2 命令 键 ...

  3. SSE两个页面的相互通信

    两个页面之间互相通信 首先搭建express框架,然后通过two页面发送数据给服务器,服务器把数据传送给one页面 在two 中发送数据,在one中显示 router/index.js var axi ...

  4. C#如何用OpenFileDialog控件打开图片显示到PictureBox这个控件

    openFileDialog1.Filter = "图片文件|*.jpg|BMP图片|*.bmp|Gif图片|*.gif"; OpenFileDialog ofd = new Op ...

  5. CentOS 6.9设置阿里云源/163源

    阿里云: 1.备份 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 2.下载新的CentOS ...

  6. Appium+python自动化10-AVD 模拟器

    前言 有些小伙伴没android手机,这时候可以在电脑上开个模拟器玩玩 一.模拟器配置 1.双击启动AVD Manager,进入配置界面

  7. MS Sql Server 中主从库的配置和使用介绍

    网站规模到了一定程度之后,该分的也分了,该优化的也做了优化,但是还是不能满足业务上对性能的要求:这时候我们可以考虑使用主从库. 主从库是两台服务器上的两个数据库,主库以最快的速度做增删改操作+最新数据 ...

  8. mac 查看cpu个数

    mac 查看cpu个数   同是unix系统的mac,如何查看cpu个数及其相关信息呢?

  9. C 语言高效编程的几招——A few action of efficient C language programming

    编写高效简洁的C 语言代码,是许多软件工程师追求的目标.本文就工作中的一些体会和经验做相关的阐述,不对的地方请各位指教. 第1 招:以空间换时间 计算机程序中最大的矛盾是空间和时间的矛盾,那么,从这个 ...

  10. 最佳实践扩展Windows窗体DataGridView控件 .net 4.5 附示例代码

    Windows窗体DataGridView控件的性能调优.net 4.5   在处理大量数据时, DataGridView 控制可以消耗大量的内存开销,除非你仔细地使用它. 在客户有限的内存,你可以避 ...