深度学习voc数据集图片resize
本人新写的3个pyhton脚本。
(1)单张图片的resize:
# coding = utf-8
import Image def convert(width,height):
im = Image.open("C:\\workspace\\PythonLearn1\\test.jpg")
out = im.resize((width, height),Image.ANTIALIAS)
out.save("C:\\workspace\\PythonLearn1\\test.jpg")
if __name__ == '__main__':
convert(256,256)
(2)resize整个文件夹里的图片:
# coding = utf-8
import Image
import os def convert(dir,width,height):
file_list = os.listdir(dir)
print(file_list)
for filename in file_list:
path = ''
path = dir+filename
im = Image.open(path)
out = im.resize((256,256),Image.ANTIALIAS)
print "%s has been resized!"%filename
out.save(path) if __name__ == '__main__':
dir = raw_input('please input the operate dir:')
convert(dir,256,256)
注意点:服务器性能所限,要将500*500数据集resize到256*256。上面只是初步处理,实际上要训练出高质量的模型以上的方式并不严谨,应当按比例resize,这样的好处是图片不会变形。
(3)按比例resize
# coding = utf-8
import Image def convert(width,height):
im = Image.open("C:\\workspace\\PythonLearn1\\test_1.jpg")
(x, y)= im.size
x_s = width
y_s = y * x_s / x
out = im.resize((x_s, y_s), Image.ANTIALIAS)
out.save("C:\\workspace\\PythonLearn1\\test_1_out.jpg")
if __name__ == '__main__':
convert(256,256)
本来我的计划是按照比例resize图片,因为图片不可能正好是正方形的,所以想在不足256*256时用空白填充(这句话来自FCN的原文),后来有小伙伴说其实fcn可以接收任意尺寸大小的图片,用空白填充可能还会引入噪声,所以目前工作只做到这里。
关于python的图像处理库,PIL下面的链接给出了参考。在后续的制作数据集的过程中应该会有用武之地。
参考文章: http://blog.csdn.net/yupu56/article/details/50471119
深度学习voc数据集图片resize的更多相关文章
- Recorder︱深度学习小数据集表现、优化(Active Learning)、标注集网络获取
一.深度学习在小数据集的表现 深度学习在小数据集情况下获得好效果,可以从两个角度去解决: 1.降低偏差,图像平移等操作 2.降低方差,dropout.随机梯度下降 先来看看深度学习在小数据集上表现的具 ...
- 深度学习常用数据集 API(包括 Fashion MNIST)
基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 ...
- Python3读取深度学习CIFAR-10数据集出现的若干问题解决
今天在看网上的视频学习深度学习的时候,用到了CIFAR-10数据集.当我兴高采烈的运行代码时,却发现了一些错误: # -*- coding: utf-8 -*- import pickle as p ...
- 关于入门深度学习mnist数据集前向计算的记录
import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorfl ...
- [深度学习]-Dataset数据集加载
加载数据集dataloader from torch.utils.data import DataLoader form 自己写的dataset import Dataset train_set = ...
- 深度学习基础系列(十一)| Keras中图像增强技术详解
在深度学习中,数据短缺是我们经常面临的一个问题,虽然现在有不少公开数据集,但跟大公司掌握的海量数据集相比,数量上仍然偏少,而某些特定领域的数据采集更是非常困难.根据之前的学习可知,数据量少带来的最直接 ...
- 基于深度学习的车辆检测系统(MATLAB代码,含GUI界面)
摘要:当前深度学习在目标检测领域的影响日益显著,本文主要基于深度学习的目标检测算法实现车辆检测,为大家介绍如何利用\(\color{#4285f4}{M}\color{#ea4335}{A}\colo ...
- ui2code中的深度学习+传统算法应用
背景 在之前的文章中,我们已经提到过团队在UI自动化这方面的尝试,我们的目标是实现基于 单一图片到代码 的转换,在这个过程不可避免会遇到一个问题,就是为了从单一图片中提取出足够的有意义的结构信息,我们 ...
- 2020厦门大学综述翻译:3D点云深度学习(Remote Sensiong期刊)
目录 摘要 1.引言: 2.点云深度学习的挑战 3.基于结构化网格的学习 3.1 基于体素 3.2 基于多视图 3.3 高维晶格 4.直接在点云上进行的深度学习 4.1 PointNet 4.2 局部 ...
随机推荐
- DotNetOpenAuth Part 1 : Authorization 验证服务实现及关键源码解析
DotNetOpenAuth 是 .Net 环境下OAuth 开源实现框架.基于此,可以方便的实现 OAuth 验证(Authorization)服务.资源(Resource)服务.针对 DotNet ...
- 王者荣耀交流协会final发布中间产物
WBS+PSP 版本控制报告 软件功能说明书final修订
- 按照Right-BICEP要求设计四则运算3程序的单元测试用例
按照Right-BICEP要求: Right——结果是否正确? B——是否所有的边界条件都是正确的? I——能查一下反响关联吗? C——能用其它手段交叉检查一下吗? E——你是否可以强制错误条件发生? ...
- SDN练习一
SDN练习第一题 题目描述 实现网络拓扑: 具体要求: 南向接口采用OpenFlow 协议. 可查看网络的拓扑信息视图. H1.H2.H3.H4 任意两两可互通. 实现思路 利用mininet可视化图 ...
- HDU 5861 Road 线段树区间更新单点查询
题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5861 Road Time Limit: 12000/6000 MS (Java/Othe ...
- C语言之goto浅析
1. 读代码时遇了的疑惑点: static int do_bind(const char *host, int port, int protocol, int *family) { int fd; ...
- (二)java.util.Scanner的使用
Scanner是一个使用正则表达式来解析基本类型和字符串的简单文本扫描器.Scanner 使用分隔符模式将其输入分解为标记,默认情况下该分隔符模式与空白匹配.然后可以使用不同的 next 方法将得到的 ...
- bond下改变网卡
浪潮服务器打开控制台 用ip addr查看哪个网卡是绑定的,eth2和eth4是绑定状态 用mv命令,更改网卡名称 并将每个网卡里的信息更改 reboot,重启 ip addr查看,eth6和eth8 ...
- PHP用抛物线的模型实现微信红包生成算法的程序源码
<?php /* *Author:Kermit *Time:2015-8-26 *Note:红包生成随机算法 */ header("Content-type:text/html;cha ...
- js get selected text
js get selected text https://stackoverflow.com/questions/3170648/how-to-get-javascript-select-boxs-s ...