Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.  Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.  Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

裸的 dinic  代码如下...  可做模板 orzzzz
#include<iostream>
#include<cstring>
#include<cstdio>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<algorithm>
#include<vector>
#define INFINFE 999999999
#define N 300
using namespace std;
int G[300][300];
bool visited[300];
int layer[300];
int n,m;
bool countlayer()
{
// cout<<"***"<<endl;
//int Layer=0;
deque<int>q;
memset(layer,0xff,sizeof(layer));
layer[1]=0;
q.push_back(1);
while(!q.empty())
{
int v=q.front();
q.pop_front();
for(int j=1; j<=m; j++)
{
if(G[v][j]>0&&layer[j]==-1)
{
layer[j]=layer[v]+1;
if(j==m)
return true;
else
q.push_back(j);
}
}
}
return false;
}
int Dinic()
{
int i;
//int s;
int nmaxflow=0;
deque<int>q;
while(countlayer())
{
while(!q.empty())
q.pop_back();
q.push_back(1);
memset(visited,0,sizeof(visited));
visited[1]=1; while(!q.empty())
{
int nd=q.back();
if(nd==m)
{
int nminc=INFINFE;
int nminc_vs;
for(unsigned int i=1; i<q.size(); i++)
{
int vs=q[i-1];
int ve=q[i];
if(G[vs][ve]>0)
{
if(nminc>G[vs][ve])
{
nminc=G[vs][ve];
nminc_vs=vs;
}
}
}
nmaxflow+=nminc;
for(unsigned int i=1; i<q.size(); i++)
{
int vs=q[i-1];
int ve=q[i];
G[vs][ve]-=nminc;
G[ve][vs]+=nminc;
}
while(!q.empty()&&q.back()!=nminc_vs)
{
visited[q.back()]=0;
q.pop_back();
}
}
else
{
for(i=1; i<=m; i++)
{
if(G[nd][i]>0&&layer[i]==layer[nd]+1&&!visited[i])
{
visited[i]=1;
q.push_back(i);
break;
}
}
if(i>m)
q.pop_back();
}
}
}
return nmaxflow;
}
int main()
{
while(cin>>n>>m)
{
int i;
int s,e,c;
memset(G,0,sizeof(G));
for(i=0; i<n; i++)
{
cin>>s>>e>>c;
G[s][e]+=c;
}
cout<<Dinic()<<endl;
}
return 0;
}

poj 1273 裸 网络流 (dinic)的更多相关文章

  1. POJ 1273 Drainage Ditches -dinic

    dinic版本 感觉dinic算法好帅,比Edmonds-Karp算法不知高到哪里去了 Description Every time it rains on Farmer John's fields, ...

  2. Drainage Ditches - poj 1273(网络流模板)

    题意:1是源点,m是汇点,求出来最大流量,没什么好说的就是练习最大流的模板题 ************************************************************* ...

  3. poj 1273最大流dinic算法模板

    #include<stdio.h> #include<string.h> #define N 300 #define inf 0x7fffffff #include<qu ...

  4. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  5. (网络流 模板 Dinic) Drainage Ditches --POJ --1273

    链接: http://poj.org/problem?id=1273 代码: //Dinic #include<stdio.h> #include<string.h> #inc ...

  6. POJ 1273 Drainage Ditches (网络流Dinic模板)

    Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...

  7. BZOJ1001 狼抓兔子(裸网络流)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  8. UVA 820 --- POJ 1273 最大流

    找了好久这两个的区别...UVA820 WA了 好多次.不过以后就做模板了,可以求任意两点之间的最大流. UVA 是无向图,因此可能有重边,POJ 1273是有向图,而且是单源点求最大流,因此改模板的 ...

  9. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

随机推荐

  1. hbase和ZooKeeper集群安装配置

    一:ZooKeeper集群安装配置 1:解压zookeeper-3.3.2.tar.gz并重命名为zookeeper. 2:进入~/zookeeper/conf目录: 拷贝zoo_sample.cfg ...

  2. idea 模版之自定义类与方法注释

    idea 模版之自定义类与方法注释 很多公司都有要求的代码注释规范,我们每新建类或者方法的时候从新复制粘贴很麻烦,而且容易粘错. 当然自定义模板还可以用到很多地方,比如系统自带的 sout就是syst ...

  3. 深入react技术栈解读

    1. react实现virtual DOM ,如果要改变页面的内容,还是需要执行DOM操作,比原生操作DOM多了virtualDOM的操作(计算,对比等), 应该是更耗性能??? 2. react特点 ...

  4. Segments CodeForces 909B (找规律)

    Description You are given an integer N. Consider all possible segments (线段,划分)on the coordinate axis ...

  5. 定制自己的动画 View 控件(Canvas 使用)

    定制自己的动画 View 控件(Canvas 使用) 如果要定义自己的 View 控件,则需要新建一个类继承 android.view.View.然后在 onDraw 中写自己需要实现的方式. 这里定 ...

  6. 20162320MyOD重做版

    博客说明 由于上次的MyOD.java没有得分,所以这次我重做了这个java,代码是自己完成的,请教了一些同学的思路.故补交一篇博客来说明我对每一步代码的编写的想法以及理解. 代码片段及理解 1.先创 ...

  7. python struct详解

    转载:https://www.cnblogs.com/gala/archive/2011/09/22/2184801.html 有的时候需要用python处理二进制数据,比如,存取文件,socket操 ...

  8. 基础系列(4)—— C#装箱和拆箱

    一 装箱和拆箱的概念 装箱是将值类型转换为引用类型 : 拆箱是将引用类型转换为值类型 : 值类型:包括原类型(Sbyte.Byte.Short.Ushort.Int.Uint.Long.Ulong.C ...

  9. 软工1816 · Alpha冲刺(8/10)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员1(组长):王彬 过去两天完成了哪些任务 推进前后端各个接口的整合 学习jQuery基本语法,为beta阶段的商铺页面做准备 接下 ...

  10. 【并查集】 不相交集合 - 并查集 教程(文章作者:Slyar)

    最近写了一个多星期的并查集,一瞬间贴出这么多解题报告,我想关于并查集的应用先告一段落吧,先总结一下. 在网上看到一篇关于并查集比较好的教程(姑且允许我这么说吧),不转过来是在可惜.献给爱学习的你 文章 ...