Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.  Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.  Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

裸的 dinic  代码如下...  可做模板 orzzzz
#include<iostream>
#include<cstring>
#include<cstdio>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<algorithm>
#include<vector>
#define INFINFE 999999999
#define N 300
using namespace std;
int G[300][300];
bool visited[300];
int layer[300];
int n,m;
bool countlayer()
{
// cout<<"***"<<endl;
//int Layer=0;
deque<int>q;
memset(layer,0xff,sizeof(layer));
layer[1]=0;
q.push_back(1);
while(!q.empty())
{
int v=q.front();
q.pop_front();
for(int j=1; j<=m; j++)
{
if(G[v][j]>0&&layer[j]==-1)
{
layer[j]=layer[v]+1;
if(j==m)
return true;
else
q.push_back(j);
}
}
}
return false;
}
int Dinic()
{
int i;
//int s;
int nmaxflow=0;
deque<int>q;
while(countlayer())
{
while(!q.empty())
q.pop_back();
q.push_back(1);
memset(visited,0,sizeof(visited));
visited[1]=1; while(!q.empty())
{
int nd=q.back();
if(nd==m)
{
int nminc=INFINFE;
int nminc_vs;
for(unsigned int i=1; i<q.size(); i++)
{
int vs=q[i-1];
int ve=q[i];
if(G[vs][ve]>0)
{
if(nminc>G[vs][ve])
{
nminc=G[vs][ve];
nminc_vs=vs;
}
}
}
nmaxflow+=nminc;
for(unsigned int i=1; i<q.size(); i++)
{
int vs=q[i-1];
int ve=q[i];
G[vs][ve]-=nminc;
G[ve][vs]+=nminc;
}
while(!q.empty()&&q.back()!=nminc_vs)
{
visited[q.back()]=0;
q.pop_back();
}
}
else
{
for(i=1; i<=m; i++)
{
if(G[nd][i]>0&&layer[i]==layer[nd]+1&&!visited[i])
{
visited[i]=1;
q.push_back(i);
break;
}
}
if(i>m)
q.pop_back();
}
}
}
return nmaxflow;
}
int main()
{
while(cin>>n>>m)
{
int i;
int s,e,c;
memset(G,0,sizeof(G));
for(i=0; i<n; i++)
{
cin>>s>>e>>c;
G[s][e]+=c;
}
cout<<Dinic()<<endl;
}
return 0;
}

poj 1273 裸 网络流 (dinic)的更多相关文章

  1. POJ 1273 Drainage Ditches -dinic

    dinic版本 感觉dinic算法好帅,比Edmonds-Karp算法不知高到哪里去了 Description Every time it rains on Farmer John's fields, ...

  2. Drainage Ditches - poj 1273(网络流模板)

    题意:1是源点,m是汇点,求出来最大流量,没什么好说的就是练习最大流的模板题 ************************************************************* ...

  3. poj 1273最大流dinic算法模板

    #include<stdio.h> #include<string.h> #define N 300 #define inf 0x7fffffff #include<qu ...

  4. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  5. (网络流 模板 Dinic) Drainage Ditches --POJ --1273

    链接: http://poj.org/problem?id=1273 代码: //Dinic #include<stdio.h> #include<string.h> #inc ...

  6. POJ 1273 Drainage Ditches (网络流Dinic模板)

    Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...

  7. BZOJ1001 狼抓兔子(裸网络流)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  8. UVA 820 --- POJ 1273 最大流

    找了好久这两个的区别...UVA820 WA了 好多次.不过以后就做模板了,可以求任意两点之间的最大流. UVA 是无向图,因此可能有重边,POJ 1273是有向图,而且是单源点求最大流,因此改模板的 ...

  9. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

随机推荐

  1. LeetCode 148——排序链表

    1. 题目 2. 解答 2.1 快速排序 可参考 快速排序和归并排序 中的第一种快速排序思想,与在数组中排序有两点不同. 第一,我们需要取最后一个元素作为主元,在数组中可以直接访问到最后一个元素,但在 ...

  2. Floyd算法(原理|代码实现)

    http://www.cnblogs.com/twjcnblog/archive/2011/09/07/2170306.html 正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是 ...

  3. Java 异常总结

    Throwablede类是 Java 语言中所有错误或异常的超类. 两个子类的实例,Error 和 Exception Error 是 Throwablede 的子类,用于指示合理的应用程序不应该试图 ...

  4. springmvc 路由

    工作中MVC是较常使用的web框架,作为研发人员,也习惯了以编写Controller作为项目开始,写好了Controller和对应的方法,加上@RequestMapping注解,我们也就认为一切已经准 ...

  5. Scrum 项目准备3.0

    SCRUM 流程的步骤2: Spring 计划 1. 确保product backlog井然有序.(参考示例图1) 2. Sprint周期,一个冲刺周期,长度定为两周,本学期还有三个冲刺周期. Spr ...

  6. 2nd 阅读构建之法有感

    阅读构建之法有感 利用这一周的时间,我大致了解构建之法一书,这本书带我走进了一个全新的领域.它让我以一种新的视角去了解软件产业的发展和工作,领略软件工程的独特魅力,更给出了简单易懂的方式去理解何为软件 ...

  7. 2nd scrum站立会议

    scrum站立会议 站立会议是让团队成员每日面对面站立互相交流他们所承担任务的进度.它的一个附带好处是让同组成员了解到工作的情况.本质上是为了团队交流,不是会议报告. 站立会议的目的: 1.让整个团队 ...

  8. this.AcceptButton = button1的用法:

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  9. 定制安全的PHP环境

    除了熟悉各种PHP漏洞外,还可以通过配置php.ini来加固PHP的运行环境.PHP官方也曾经多次修改php.ini的默认设置.在本书中,推荐php.ini中一些安全相关参数的配置. register ...

  10. 反向代理负载均衡-----nginx

    一:集群 1.1:集群的概念    集群是一组相互独立的.通过高速网络互联的计算机,他们构成了一个组,并以单一系统的模式加以管理.一个客户与集群相互作用时,集群像是一个独立的服务器.集群配置是用于提高 ...