package com.my.hadoop.mapreduce.wordcount;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

/**
 * MapReduce中的WordCount
 * @author yao
 *
 */
public class WordCount {

/**
     * MapReduce中的map函数的泛型
     * KEYIN        map函数读取文件行内容的偏移量为key
     * VALUEIN         map函数读取文件行内容
     * KEYOUT        map函数处理后输出到reduce函数的key
     * VALUEOUT        map函数处理后输出到reduce函数的value
     * @author yao
     *
     */
    static class WcMap extends Mapper<LongWritable, Text, Text, LongWritable>{
        private static final LongWritable ONE = new LongWritable(1l);
        private Text word = new Text();
        public void map(LongWritable key, Text value, Context context) throws IOException ,InterruptedException {
            String[] words = value.toString().split(" ");
            for (String w : words) {
                word.set(w);
                context.write(word, ONE);
            }
        }
    }
    
    /**
     * MapReduce中的reduce函数的泛型
     * KEYIN        reduce函数读取map函数输出的key
     * VALUEIN        reduce函数读取map函数输出的value
     * KEYOUT        reduce函数处理后输出到hdfs上文件的key
     * VALUEOUT        reduce函数处理后输出到hdfs上文件的value
     * @author yao
     *
     */
    static class WcReduce extends Reducer<Text, LongWritable, Text, LongWritable>{
        public void reduce(Text key, Iterable<LongWritable> value, Context context) throws java.io.IOException ,InterruptedException {
            long count = 0;
            for (LongWritable i : value) {
                count += i.get();
            }
            context.write(key, new LongWritable(count));
        }
    }
    
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();                                            //new配置对象,默认读取顺序是default-site.xml<core-site.xml
        
        String[] paths = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (paths.length != 2) {
            System.err.println("Usage: " + WordCount.class.getName() + " <in> <out>");
            System.exit(2);
        }
        
        Job job = Job.getInstance(conf, WordCount.class.getSimpleName());                    //1.x是new Job,2.x为Job.getInstance
        job.setJarByClass(WordCount.class);                                                    //设置main方法所在的类
        
        FileInputFormat.setInputPaths(job, new Path(args[0]));                                //设置当前作业的输入路径(可有多个输入路径)
        job.setMapperClass(WcMap.class);                                                    //指定自定义的map函数
        job.setMapOutputKeyClass(Text.class);                                                //指定自定义map函数的输出到reduce函数的key类型
        job.setMapOutputValueClass(LongWritable.class);                                        //指定自定义map函数的输出到reduce函数的value类型
        
        job.setCombinerClass(WcReduce.class);                                                //在map函数输出到reduce函数进行本地合并以减少网络传输的带宽资源(根据需求使用,并不适用所有业务)
        
        job.setReducerClass(WcReduce.class);                                                //指定自定义的reduce函数
        job.setOutputKeyClass(Text.class);                                                    //指定自定义的reduce函数输出到hdfs的key类型
        job.setOutputValueClass(LongWritable.class);                                        //指定自定义的reduce函数输出到hdfs的value类型
        FileOutputFormat.setOutputPath(job, new Path(args[1]));                                //设置当前作业的输出到hdfs的路径(只有一个输出路径且该路径必须不存在)
        
        int status = job.waitForCompletion(true) ? 0 : 1;                                    //提交作业:true是打印作业进度详情,false则是不打印
        System.exit(status);
    }

}

hadoop2.2.0的WordCount程序的更多相关文章

  1. hadoop2.7.0实践- WordCount

    环境要求 说明:本文档为wordcount的mapreduce job编写及执行文档. 操作系统:Ubuntu14 x64位 Hadoop:Hadoop 2.7.0 Hadoop官网:http://h ...

  2. hadoop2.7.x运行wordcount程序卡住在INFO mapreduce.Job: Running job:job _1469603958907_0002

    一.抛出问题 Hadoop集群(全分布式)配置好后,运行wordcount程序测试,发现每次运行都会卡住在Running job处,然后程序就呈现出卡死的状态. wordcount运行命令:[hado ...

  3. 搭建Hadoop2.6.0+Eclipse开发调试环境(以及log4j.properties的配置)

    上一篇在win7虚拟机下搭建了hadoop2.6.0伪分布式环境.为了开发调试方便,本文介绍在eclipse下搭建开发环境,连接和提交任务到hadoop集群. 1. 环境 Eclipse版本Luna ...

  4. 搭建Hadoop2.6.0+Eclipse开发调试环境

    上一篇在win7虚拟机下搭建了hadoop2.6.0伪分布式环境.为了开发调试方便,本文介绍在eclipse下搭建开发环境,连接和提交任务到hadoop集群. 1. 环境 Eclipse版本Luna ...

  5. Hadoop2.2.0 第一步完成MapReduce wordcount计算文本数量

    1.完成Hadoop2.2.0单机版环境搭建之后需要利用一个例子程序来检验hadoop2 的mapreduce的功能 //启动hdfs和yarn sbin/start-dfs.sh sbin/star ...

  6. 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0

    使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...

  7. eclipse开发hadoop2.2.0程序

    在 Eclipse 环境下可以方便地进行 Hadoop 并行程序的开发和调试.前提是安装hadoop-eclipse-plugin,利用这个 plugin, 可以在 Eclipse 中创建一个 Had ...

  8. 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

    今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...

  9. Hadoop-2.4.0安装和wordcount执行验证

    Hadoop-2.4.0安装和wordcount执行验证 下面描写叙述了64位centos6.5机器下,安装32位hadoop-2.4.0,并通过执行 系统自带的WordCount样例来验证服务正确性 ...

随机推荐

  1. C++ inline 函数

    (一)inline函数(摘自C++ Primer的第三版) 在函数声明或定义中函数返回类型前加上关键字inline即把min()指定为内联. inline int min(int first, int ...

  2. Java 编程的动态性,第 8 部分: 用代码生成取代反射--转载

    既然您已经看到了如何使用 Javassist 和 BCEL 框架来进行 classworking (请参阅 本系列以前的一组文章), 我将展示一个实际的 classworking 应用程序.这个应用程 ...

  3. MySQL批量更新死锁案例分析--转载

    问题描述 在做项目的过程中,由于写SQL太过随意,一不小心就抛了一个死锁异常,如下: com.mysql.jdbc.exceptions.jdbc4.MySQLTransactionRollbackE ...

  4. 使用Intent实现Activity的隐式跳转

    相比于显式Intent,隐式Intent 则含蓄了许多,它并不明确指出我们想要启动哪一个活动,而是指定了一系列更为抽象的action 和category 等信息,然后交由系统去分析这个Intent,并 ...

  5. 如何完全退出android应用程序

    当一个android应用程序包含多个activity时,要完全退出android应用程序,便要销毁掉所有的activity,下面是一种网上流传的比较经典完美的方法: 首先要定义一个继承Applicat ...

  6. java RSA签名

    try{ //1初始化秘钥 KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA"); key ...

  7. maven第四章背景案例

    4.3简要设计 4.3.1接口设计 4.3.2模块结构 思想 先定义出核心接口,一个接口可以认为是一个功能,根据接口划分功能 设计模式就是一种思想,外观模式和代理模式,适配者模式三者的区别 http: ...

  8. LINQ简明教程:数据排序、分组、过滤

    LINQ可以对很多数据源进行查询操作,比如数据库.数组(array).链表(list).XML文件等.在本文中,我将从数组中提取数据,这些数据是10个最受欢迎的国家.有一个类叫Countries,有c ...

  9. class类名的管理

    var a=document.querySelector(".div1"); a.classList.remove("div2");//减掉一个 a.class ...

  10. 【转】setStyleSheet用法

    [转自]http://blog.csdn.net/seanyxie/article/details/5925723 使用setStyleSheet来设置图形界面的外观: QT Style Sheets ...