package com.my.hadoop.mapreduce.wordcount;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

/**
 * MapReduce中的WordCount
 * @author yao
 *
 */
public class WordCount {

/**
     * MapReduce中的map函数的泛型
     * KEYIN        map函数读取文件行内容的偏移量为key
     * VALUEIN         map函数读取文件行内容
     * KEYOUT        map函数处理后输出到reduce函数的key
     * VALUEOUT        map函数处理后输出到reduce函数的value
     * @author yao
     *
     */
    static class WcMap extends Mapper<LongWritable, Text, Text, LongWritable>{
        private static final LongWritable ONE = new LongWritable(1l);
        private Text word = new Text();
        public void map(LongWritable key, Text value, Context context) throws IOException ,InterruptedException {
            String[] words = value.toString().split(" ");
            for (String w : words) {
                word.set(w);
                context.write(word, ONE);
            }
        }
    }
    
    /**
     * MapReduce中的reduce函数的泛型
     * KEYIN        reduce函数读取map函数输出的key
     * VALUEIN        reduce函数读取map函数输出的value
     * KEYOUT        reduce函数处理后输出到hdfs上文件的key
     * VALUEOUT        reduce函数处理后输出到hdfs上文件的value
     * @author yao
     *
     */
    static class WcReduce extends Reducer<Text, LongWritable, Text, LongWritable>{
        public void reduce(Text key, Iterable<LongWritable> value, Context context) throws java.io.IOException ,InterruptedException {
            long count = 0;
            for (LongWritable i : value) {
                count += i.get();
            }
            context.write(key, new LongWritable(count));
        }
    }
    
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();                                            //new配置对象,默认读取顺序是default-site.xml<core-site.xml
        
        String[] paths = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (paths.length != 2) {
            System.err.println("Usage: " + WordCount.class.getName() + " <in> <out>");
            System.exit(2);
        }
        
        Job job = Job.getInstance(conf, WordCount.class.getSimpleName());                    //1.x是new Job,2.x为Job.getInstance
        job.setJarByClass(WordCount.class);                                                    //设置main方法所在的类
        
        FileInputFormat.setInputPaths(job, new Path(args[0]));                                //设置当前作业的输入路径(可有多个输入路径)
        job.setMapperClass(WcMap.class);                                                    //指定自定义的map函数
        job.setMapOutputKeyClass(Text.class);                                                //指定自定义map函数的输出到reduce函数的key类型
        job.setMapOutputValueClass(LongWritable.class);                                        //指定自定义map函数的输出到reduce函数的value类型
        
        job.setCombinerClass(WcReduce.class);                                                //在map函数输出到reduce函数进行本地合并以减少网络传输的带宽资源(根据需求使用,并不适用所有业务)
        
        job.setReducerClass(WcReduce.class);                                                //指定自定义的reduce函数
        job.setOutputKeyClass(Text.class);                                                    //指定自定义的reduce函数输出到hdfs的key类型
        job.setOutputValueClass(LongWritable.class);                                        //指定自定义的reduce函数输出到hdfs的value类型
        FileOutputFormat.setOutputPath(job, new Path(args[1]));                                //设置当前作业的输出到hdfs的路径(只有一个输出路径且该路径必须不存在)
        
        int status = job.waitForCompletion(true) ? 0 : 1;                                    //提交作业:true是打印作业进度详情,false则是不打印
        System.exit(status);
    }

}

hadoop2.2.0的WordCount程序的更多相关文章

  1. hadoop2.7.0实践- WordCount

    环境要求 说明:本文档为wordcount的mapreduce job编写及执行文档. 操作系统:Ubuntu14 x64位 Hadoop:Hadoop 2.7.0 Hadoop官网:http://h ...

  2. hadoop2.7.x运行wordcount程序卡住在INFO mapreduce.Job: Running job:job _1469603958907_0002

    一.抛出问题 Hadoop集群(全分布式)配置好后,运行wordcount程序测试,发现每次运行都会卡住在Running job处,然后程序就呈现出卡死的状态. wordcount运行命令:[hado ...

  3. 搭建Hadoop2.6.0+Eclipse开发调试环境(以及log4j.properties的配置)

    上一篇在win7虚拟机下搭建了hadoop2.6.0伪分布式环境.为了开发调试方便,本文介绍在eclipse下搭建开发环境,连接和提交任务到hadoop集群. 1. 环境 Eclipse版本Luna ...

  4. 搭建Hadoop2.6.0+Eclipse开发调试环境

    上一篇在win7虚拟机下搭建了hadoop2.6.0伪分布式环境.为了开发调试方便,本文介绍在eclipse下搭建开发环境,连接和提交任务到hadoop集群. 1. 环境 Eclipse版本Luna ...

  5. Hadoop2.2.0 第一步完成MapReduce wordcount计算文本数量

    1.完成Hadoop2.2.0单机版环境搭建之后需要利用一个例子程序来检验hadoop2 的mapreduce的功能 //启动hdfs和yarn sbin/start-dfs.sh sbin/star ...

  6. 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0

    使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...

  7. eclipse开发hadoop2.2.0程序

    在 Eclipse 环境下可以方便地进行 Hadoop 并行程序的开发和调试.前提是安装hadoop-eclipse-plugin,利用这个 plugin, 可以在 Eclipse 中创建一个 Had ...

  8. 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

    今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...

  9. Hadoop-2.4.0安装和wordcount执行验证

    Hadoop-2.4.0安装和wordcount执行验证 下面描写叙述了64位centos6.5机器下,安装32位hadoop-2.4.0,并通过执行 系统自带的WordCount样例来验证服务正确性 ...

随机推荐

  1. 《UNIX网络编程》之点对点通信

    思路: 点对点通信,其原理也比较简单,在前面回显服务器的基础上,我们分别在服务端和客户端都使用两个线程,一个线程负责发送数据包,一个线程负责接收数据包. 代码如下: 客户端: /*********** ...

  2. 如何实现数字lcd显示效果(原创)

    如题,我最先想到的是找一种字体,然后来显示lcd的效果,但是字体又无法满足有空位的时候那个暗灰色的文字的效果,如下所示 就是前三位那些灰色的888,因为你设置数值的时候只能是从0-9的数字,而这灰色的 ...

  3. 大数据笔记02:大数据之Hadoop的生态系统和版本

    1.Hadoop的生态系统: (1)图1: (2)图2: 图1 和 图2 都是形象说明了Hadoop的生态圈. 2.举例介绍Hadoop生态圈的小工具: (1)Hive工具(中文意思:小蜜蜂) 利用H ...

  4. NYOJ 214 最长上升子序列nlogn

    普通的思路是O(n2)的复杂度,这个题的数据量太大,超时,这时候就得用nlogn的复杂度的算法来做,这个算法的主要思想是只保存有效的序列,即最大递增子序列,然后最后得到数组的长度就是最大子序列.比如序 ...

  5. ListIterator add remove 使用注意

    add方法示例 //在最前面添加 List<String> list1 = new LinkedList<String>(Arrays.asList(new String[]  ...

  6. noip 2009 细胞分裂

    /*数论题 考察唯一分解定理 当然用到一些技巧*/ #include<iostream> #include<cstdio> #include<cstring> #d ...

  7. python的行与缩进

    #coding=utf-8#逻辑行与物理行#以下是3个物理行print "abc"print "789"print "777" #以下是1个 ...

  8. string与stringbuilder的区别

    1.分析string与stringbuilder的区别,我们先来看下面一段代码 首先我们使用string进行字符串的拼接 class Program { static void Main(string ...

  9. PHP编写的SVN类

    <?php /** * SVN 外部命令 类 * * @author rubekid * * @todo comment need addslashes for svn commit * */ ...

  10. php function_name($type=0,$order_ids='',$flag=2)

    $order_ids='',表示$order_ids是字符串,不是数组 foreach ($order_ids as $key=>$order_id){            //TODO} 这 ...