传送门

第一次做这种题, 尽管ac了但是完全不知道为什么这么做。

题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路。

做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个方向, 然后连一条边, 权值为1。 最后统计入度出度, 如果一个点的(入度-出度)%2==1, 就说明不存在欧拉回路。 如果全都满足, 就判断每个点的入度出度的大小关系, 入度>出度, 就向汇点连一条边, 权值为(入度-出度)/2, 相反的话就向源点连边。

跑一遍最大流, 看是否满流, 如果满流就说明存在。

完全不理解.....还是太弱。

 #include<bits/stdc++.h>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, a, n) for(int i = a; i<n; i++)
#define ull unsigned long long
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = ;
const int maxE = ;
int indeg[maxn], outdeg[maxn];
int head[maxE], s, t, num, q[maxE], dis[maxn];
struct node
{
int to, nextt, c;
}e[maxE];
void init() {
mem1(head);
num = ;
mem(indeg);
mem(outdeg);
}
void add(int u, int v, int c) {
e[num].to = v; e[num].nextt = head[u]; e[num].c = c; head[u] = num++;
e[num].to = u; e[num].nextt = head[v]; e[num].c = ; head[v] = num++;
}
int bfs() {
mem(dis);
int st = , ed = ;
q[ed++] = s;
dis[s] = ;
while(st<ed) {
int u = q[st++];
for(int i = head[u]; ~i; i = e[i].nextt) {
int v = e[i].to;
if(e[i].c&&!dis[v]) {
dis[v] = dis[u]+;
if(v == t)
return ;
q[ed++] = v;
}
}
}
return ;
}
int dfs(int u, int limit) {
if(u == t)
return limit;
int cost = ;
for(int i = head[u]; ~i; i = e[i].nextt) {
int v = e[i].to;
if(e[i].c&&dis[v] == dis[u]+) {
int tmp = dfs(v, min(limit-cost, e[i].c));
if(tmp>) {
e[i].c -= tmp;
e[i^].c += tmp;
cost += tmp;
if(limit == cost)
break;
} else {
dis[v] = -;
}
}
}
return cost;
}
int dinic() {
int ans = ;
while(bfs()) {
ans += dfs(s, inf);
}
return ans;
}
int main()
{
int T, n, m, x, y, z;
cin>>T;
while(T--) {
scanf("%d%d", &n, &m);
init();
s = , t = n+;
while(m--) {
scanf("%d%d%d", &x, &y, &z);
indeg[y]++;
outdeg[x]++;
if(z == ) {
add(x, y, );
}
}
int flag = ;
for(int i = ; i<=n; i++) {
if(abs(indeg[i]-outdeg[i])%==) {
flag = ;
break;
}
}
if(flag) {
cout<<"impossible"<<endl;
continue;
}
int sum = ;
for(int i = ; i<=n; i++) {
if(indeg[i]<outdeg[i]) {
add(s, i, (outdeg[i]-indeg[i])/);
} else {
add(i, t, (indeg[i]-outdeg[i])/);
sum += (indeg[i]-outdeg[i])/;
}
}
int ans = dinic();
if(ans == sum) {
cout<<"possible"<<endl;
} else {
cout<<"impossible"<<endl;
}
}
}

poj1637 Sightseeing tour 混合图欧拉回路判定的更多相关文章

  1. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  2. POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)

                                                                Sightseeing tour Time Limit: 1000MS   Me ...

  3. POJ 1637 Sightseeing tour ★混合图欧拉回路

    [题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...

  4. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  5. poj 1637 Sightseeing tour 混合图欧拉回路 最大流 建图

    题目链接 题意 给定一个混合图,里面既有有向边也有无向边.问该图中是否存在一条路径,经过每条边恰好一次. 思路 从欧拉回路说起 首先回顾有向图欧拉回路的充要条件:\(\forall v\in G, d ...

  6. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

  7. poj1637Sightseeing tour(混合图欧拉回路)

    题目请戳这里 题目大意:求混合图欧拉回路. 题目分析:最大流.竟然用网络流求混合图的欧拉回路,涨姿势了啊啊.. 其实仔细一想也是那么回事.欧拉回路是遍历所有边一次又回到起点的回路.双向图只要每个点度数 ...

  8. poj1637 Sightseeing tour[最大流+欧拉回路]

    混合图的欧拉回路定向问题. 顺便瞎说几句,有向图定欧拉回路的充要条件是每个点入度等于出度,并且图联通.无向图的话只要联通无奇点即可. 欧拉路径的确定应该是无向图联通且奇点数0个或2个,有向图忘了,好像 ...

  9. POJ 1637 Sightseeing tour(混合图的欧拉回路)

    题目链接 建个图,套个模板. #include <cstdio> #include <cstring> #include <iostream> #include & ...

随机推荐

  1. bootstrap-js(1)模态框

    1.禁止动画效果 如果你不需要模态框弹出时的动画效果(淡入淡出效果),删掉 .fade 类即可.一般还是不要去动这个,最多自己换个类名在写其他样式,不然你会头大的. <div class=&qu ...

  2. VM 443端口冲突解决办法

    netstat -aon|findstr "443" 找到占用443的进程号: tasklist|findstr "2016" 根据进程号2016找到占用443 ...

  3. MIT6.828 虚拟地址转化为物理地址——二级分页

    这个分页,主要是在mit6.828的lab2的背景下来说的. Mit6.828 Lab2:http://pdos.csail.mit.edu/6.828/2014/labs/lab2/ lab2主要讲 ...

  4. sql 设计反模式

    ---恢复内容开始--- 1.乱穿马路 ---- > 目标 : 存储多值属性. 1) 错误方法: 使用格式化的逗号分割列表. 1-> 不适合查询,定位数据,无法运用聚合函数进行分组,不利于 ...

  5. leetcode Valid Sudoku python

    #数独(すうどく,Sūdoku)是一种运用纸.笔进行演算的逻辑游戏.玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行.每一列.每一个粗线宫内的数字均含1-9,不重复.#数独盘 ...

  6. python3.5之mysql扩展

    最近在学习廖雪峰的python3的教程,这是官方http://www.liaoxuefeng.com/,建议大家想学习python的同学可以去看看,真的是在网上能找到的最好文本教程,没有之一 在廖老实 ...

  7. PHP比较全的友好的时间显示,比如‘刚刚’,'几秒前'等

    分享一个php友好的比较完成的时间格式化函数,包括‘刚刚’,'几秒之前',‘几分钟前’,'几小时前',几天前,几周前,几个月前等.调用方式很简单,是从ThinkSNS 里面拿出来的. /** * 友好 ...

  8. android应用程序的组成部分

    android 应用程序的组成部分 activity 应用表示层,应用程序中每一个UI都是通过activity类或者多个扩展实现的.activity使用fragment和视图来布局和显示信息,以及响应 ...

  9. hadoop笔记之Hive的管理(CLI方式)

    Hive的管理(一) Hive的管理(一) Hive的启动方式 CLI(命令行)方式 Web界面方式 远程服务启动方式 CLI方式 1. 进入命令行方式 直接输入<HIVE_HOME>/b ...

  10. nginx的配置说明

    #定义Nginx运行的用户和用户组user www www; #nginx进程数,建议设置为等于CPU总核心数.worker_processes 8; #全局错误日志定义类型,[ debug | in ...