bzoj3879 SvT(后缀自动机+虚树)

bzoj

有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n].

现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始位置来表示),求这些后缀两两之间的LCP(LongestCommonPrefix)的长度之和.一对后缀之间的LCP长度仅统计一遍.

题解时间

bzoj3238

完 全 一 致

只不过这个是只选中其中一部分后缀。

bzoj3238可以用SA搞也可以用SAM搞。

这题一样,但是SAM好想。

建完SAM每次询问建虚树,之后和上面那道全统计一样,一个点的贡献为 $ len[x] * \Sigma_{v1,v2} size_{v1} * size_{v2} $ 。

#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
template<typename TP>inline void read(TP &tar)
{
    TP ret=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){ret=ret*10+ch-'0';ch=getchar();}
    tar=ret*f;
}
namespace RKK
{
const int N=1000011;
int len,qaq;char str[N];int ip[N];
struct sumireko{int to,ne;}e[N];int he[N],ecnt;
void addline(int f,int t){e[++ecnt].to=t;e[ecnt].ne=he[f],he[f]=ecnt;}
struct remilia{int tranc[26],len,pre;}s[N];
int fin=1,size=1;
void ins(int ch)
{
    int npx,npy,lpx,lpy;
    npx=++size,lpx=fin,s[npx].len=s[lpx].len+1;
    for(;lpx&&!s[lpx].tranc[ch];lpx=s[lpx].pre) s[lpx].tranc[ch]=npx;
    if(!lpx) s[npx].pre=1;
    else
    {
        lpy=s[lpx].tranc[ch];
        if(s[lpy].len==s[lpx].len+1) s[npx].pre=lpy;
        else
        {
            npy=++size;
            s[npy]=s[lpy],s[npy].len=s[lpx].len+1;
            s[npx].pre=s[lpy].pre=npy;
            while(s[lpx].tranc[ch]==lpy)
                s[lpx].tranc[ch]=npy,lpx=s[lpx].pre;
        }
    }
    fin=npx;
}
int sp[N],ep[N],fa[N],top[N],dep[N],sz[N],dson[N],da;
void dfs(int x)
{
    sz[x]=1;
    for(int i=he[x],t=e[i].to;i;i=e[i].ne,t=e[i].to)
        fa[t]=x,dep[t]=dep[x]+1,dfs(t),sz[x]+=sz[t],dson[x]=(sz[t]>sz[dson[x]]?t:dson[x]);
}
void dfs(int x,int tp)
{
    top[x]=tp,sp[x]=++da;
    if(dson[x]) dfs(dson[x],tp);
    for(int i=he[x],t=e[i].to;i;i=e[i].ne,t=e[i].to)if(t!=dson[x])
        dfs(t,t);
    ep[x]=da;
}
int lca(int x,int y)
{
    while(top[x]!=top[y]) dep[top[x]]>dep[top[y]]?x=fa[top[x]]:y=fa[top[y]];
    return dep[x]<dep[y]?x:y;
}
lint ans;
bool use[N];
int work(int x)
{
    int sx=use[x];
    for(int i=he[x],t=e[i].to,st;i;i=e[i].ne,t=e[i].to)
        st=work(t),ans+=1ll*s[x].len*sx*st,sx+=st;
    return sx;
}
 
int lst[N],ln;
int sta[N],stp;
bool cmp(const int &a,const int &b){return sp[a]<sp[b];}
int Iris()
{
    scanf("%d%d%s",&len,&qaq,str+1);
    for(int i=len;i;i--) ins(str[i]-'a'),ip[i]=fin;
    for(int i=2;i<=size;i++) addline(s[i].pre,i);
    dfs(1),dfs(1,1);memset(he,0,sizeof(he)),ecnt=0;
    for(int rkk=1;rkk<=qaq;rkk++)
    {
        read(ln),stp=0,ans=0;for(int i=1,x;i<=ln;i++) read(x),lst[i]=ip[x],use[lst[i]]=1;
        sort(lst+1,lst+1+ln,cmp);
        for(int i=1,lim=ln;i<lim;i++) lst[++ln]=lca(lst[i],lst[i+1]);
        sort(lst+1,lst+1+ln,cmp),ln=unique(lst+1,lst+1+ln)-lst-1;
        for(int i=1;i<=ln;i++)
        {
            while(stp&&ep[sta[stp]]<sp[lst[i]]) stp--;
            addline(sta[stp],lst[i]),sta[++stp]=lst[i];
        }
        work(lst[1]),printf("%lld\n",ans);
        for(int i=1;i<=ln;i++) use[lst[i]]=0,he[lst[i]]=0;ecnt=0;
    }
    return 0;
}
}
int main(){return RKK::Iris();}

bzoj3879 SvT(后缀自动机+虚树)的更多相关文章

  1. CF1073G Yet Another LCP Problem 后缀自动机 + 虚树 + 树形DP

    题目描述 记 $lcp(i,j)$ 表示 $i$ 表示 $i$ 这个后缀和 $j$ 这个后缀的最长公共后缀长度给定一个字符串,每次询问的时候给出两个正整数集合 $A$ 和 $B$,求$\sum_{i\ ...

  2. BZOJ3413: 匹配(后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并... 首先可以转化一下模型(想不到qwq):问题可以转化为统计\(B\)中每个前缀在\(A\)中出现的次数.(画一画就出来了) 然后直 ...

  3. cf666E. Forensic Examination(广义后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...

  4. 洛谷P2178 [NOI2015]品酒大会(后缀自动机 线段树)

    题意 题目链接 Sol 说一个后缀自动机+线段树的无脑做法 首先建出SAM,然后对parent树进行dp,维护最大次大值,最小次小值 显然一个串能更新答案的区间是\([len_{fa_{x}} + 1 ...

  5. BZOJ1396: 识别子串(后缀自动机 线段树)

    题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...

  6. [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)

    https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...

  7. 洛谷P4493 [HAOI2018]字串覆盖(后缀自动机+线段树+倍增)

    题面 传送门 题解 字符串就硬是要和数据结构结合在一起么--\(loj\)上\(rk1\)好像码了\(10k\)的样子-- 我们设\(L=r-l+1\) 首先可以发现对于\(T\)串一定是从左到右,能 ...

  8. luogu5212/bzoj2555 substring(后缀自动机+动态树)

    对字符串构建一个后缀自动机. 每次查询的就是在转移边上得到节点的parent树中后缀节点数量. 由于强制在线,可以用动态树维护后缀自动机parent树的子树和. 注意一个玄学的优化:每次在执行连边操作 ...

  9. 模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合)

    模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合) Code: #include <bits/stdc++.h> using namespace std; #define ...

随机推荐

  1. Spring Boot部署之jar包运行

    上篇阐述了Spring Boot war部署项目,本篇阐述另一种运行方式:jar包运行. 一.打jar包 1.修改pom.xml配置 2.执行package(对于module执行package之前需要 ...

  2. CentOS8 固定IP无法访问外网问题解决(ping: www.hao123.com: Name or service not known)

    CentOS8虚拟机用了一段时间后,需要安装telnet-server服务,却无法正常安装.之前安装ftp服务是没有问题的,安装问题如下: 错误提示,无法下载相关元数据:网上也是0.0B/s.那么可能 ...

  3. 都 2022 了,还不抓紧学 typeScript ?

    Hi,我是前端人,今日与君共勉! 本篇文章主要介绍的是什么是 typeScript ? typeScript 与 javaScript 有什么关系呢?我们为什么要学习 typeScript ? 一.什 ...

  4. 北大博士生提出CAE,下游任务泛化能力优于何恺明MAE

    大家好,我是对白. 何恺明时隔两年发一作论文,提出了一种视觉自监督学习新范式-- 用掩蔽自编码器MAE,为视觉大模型开路. 这一次,北大博士生提出一个新方法CAE,在其下游任务中展现的泛化能力超过了M ...

  5. Vue 源码解读(5)—— 全局 API

    目标 深入理解以下全局 API 的实现原理. Vue.use Vue.mixin Vue.component Vue.filter Vue.directive Vue.extend Vue.set V ...

  6. 掌握这20个JS技巧,做一个不加班的前端人

    摘要:JavaScript 真的是一门很棒的语言,值得学习和使用.对于给定的问题,可以有不止一种方法来达到相同的解决方案.在本文中,我们将只讨论最快的. 本文分享自华为云社区<提高代码效率的 2 ...

  7. prometheus监控java项目(jvm等):k8s外、k8s内

    前言 虽然可以使用jvisualvm之类的工具监控java项目,但是集群环境下,还是捉襟见肘,下面介绍如何用主流的prometheus来监控java项目. java项目配置 在pom.xml中添加依赖 ...

  8. proto编译组件使用

    proto编译组件使用 前提:所有组件已经安装好,包括: protoc protoc-gen-go protoc-gen-grpc-gateway protoc-gen-swagger 怎么装再开一篇 ...

  9. webpack5学习

    目录 1. Why Webpack? 2. Webpack上手 2.1 Webpack功能 2.2 需要安装的包 2.3 简易命令 3. Webpack配置文件 3.1 局部webpack打包 3.2 ...

  10. vmware启动后虚拟机无法联网

    搜索services.msc打开服务 确认VMware NAT service和VMware DHCP service服务处于启动状态:开启自动启动,下次就会自动联网了. VMware Authori ...