题目描述:

loj

题解:

容斥+生成函数。

考虑加入的第$i$个元素对结果的贡献是$[0,i-1]$,我们可以列出生成函数。

长这样:$(1)*(1+x)*(1+x+x^2)*……*(1+x+x^2+……+x^{n-1})=\frac{\prod_{i=1}^{n}1-x^i}{(1-x)^n}$

把分母提出来:$\frac{1}{(1-x)^n} = (1+x+x^2+……)^n = \sum_{i=0}^{k} C_{i+n-1}^{n-1}$,日常小球放盒。

现在还剩$\prod_{i=1}^n 1-x^i$,可以考虑将该式理解为从$1$到$n$选$i$个数,总和为$j$,对该项系数贡献为$(-1)^i$。

由于从$1$到$n$不重复,可以发现$\sum_{i=1}^{447}>100000$,那么$i \le 447$。

那么就可以$dp$了。状态为$f[i][j]$,表示当前选了$i$个数总和为$j$,且最后一项不大于$n$的方案数。

要求选数不重复怎么办?

考虑将其构造成一个上升序列。我们用枚举差值的思想,保证前后差值大于$0$。

转移有三种:

1.将$i$个数集体+1,此时$f[i][j]+=f[i][j-i]$;

2.将$i$个数集体+1再在最前面加入一个1,此时$f[i][j]+=f[i-1][j-i]$;

3.考虑我们每次都让每个数+1,所以当$j>n$时会出现最后一项为$n+1$的情况,此时$f[i][j]-=f[i-1][j-n-1]$;

这样转移就可以了。

最后卷积卷出第$k$位的值就可以了。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MOD = 1000000007;
const int N = 100050;
const int M = 450;
int fastpow(int x,int y)
{
int ret = 1;
while(y)
{
if(y&1)ret=1ll*ret*x%MOD;
x=1ll*x*x%MOD;y>>=1;
}
return ret;
}
template<typename T>
inline void Mod(T&x){if(x>=MOD)x-=MOD;}
int n,m;
int jc[N<<1],jny[N<<1],f[M][N];
void init()
{
jc[0] = 1;
for(int i=1;i<=n+m;i++)jc[i]=1ll*jc[i-1]*i%MOD;
jny[n+m] = fastpow(jc[n+m],MOD-2);
for(int i=n+m;i;i--)jny[i-1]=1ll*jny[i]*i%MOD;
}
int C(int x,int y){return 1ll*jc[x]*jny[y]%MOD*jny[x-y]%MOD;} int main()
{
scanf("%d%d",&n,&m);
init();
f[0][0] = 1;
for(int i=1;i<M;i++)for(int j=i;j<=m;j++)
{
Mod(f[i][j] = f[i-1][j-i]+f[i][j-i]);
if(j>n)Mod(f[i][j]+=MOD-f[i-1][j-n-1]);
}
int ans = 0;
for(int i=0;i<=m;i++)
{
int tmp = 0;
for(int j=0;j<M;j++)
if(j&1)Mod(tmp+=MOD-f[j][i]);
else Mod(tmp+=f[j][i]);
Mod(ans+=1ll*tmp*C(n+m-i-1,n-1)%MOD);
}
printf("%d\n",ans);
return 0;
}

loj6077. 「2017 山东一轮集训 Day7」逆序对的更多相关文章

  1. LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)

    题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   ...

  2. 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP

    [LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...

  3. loj #6077. 「2017 山东一轮集训 Day7」逆序对

    #6077. 「2017 山东一轮集训 Day7」逆序对   题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...

  4. 「2017 山东一轮集训 Day7」逆序对

    题解: 满满的套路题.. 首先显然从大到小枚举 然后每次生成的逆序对是1----(i-1)的 这样做dp是nk的 复杂度太高了 那我们转化一下问题 变成sigma(ai   (ai<i)  )= ...

  5. 题解 「2017 山东一轮集训 Day7」逆序对

    题目传送门 Description 给定 $ n, k $,请求出长度为 $ n $ 的逆序对数恰好为 $ k $ 的排列的个数.答案对 $ 10 ^ 9 + 7 $ 取模. 对于一个长度为 $ n ...

  6. LOJ #6119. 「2017 山东二轮集训 Day7」国王

    Description 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当 ...

  7. loj6119 「2017 山东二轮集训 Day7」国王

    题目描述 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当这条路径上的工 ...

  8. loj #6079. 「2017 山东一轮集训 Day7」养猫【最大费用最大流】

    首先假设全睡觉,然后用费用流考虑平衡要求建立网络流 把1~n的点看作是i-k+1~k这一段的和,连接(i,i+k,1,e[i]-s[i]),表示把i改成吃饭,能对i~i+k-1这一段的点产生影响:然后 ...

  9. LOJ6079「2017 山东一轮集训 Day7」养猫

    养ImmortalCO k可重区间问题 的增强版:有上下界! 直接都选择s[i],然后再把一些调整到e[i] 考虑通过最大流的“最大”,使得至少每k个有me个e, 通过最大流的“上界”,限制每k个最多 ...

随机推荐

  1. Solution -「CF 1025D」Recovering BST

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),问是否存在一棵二叉搜索树,使得其中序遍历为 \(\{a_n\}\),且相邻接的两点不互素.   ...

  2. macbook安装scala、hadoop、saprk环境

    一.scala安装 1. 安装jdk 有mac专用的jdk安装包,这里下载安装jdk1.8 2. 安装scala 2.1下载scala 2.2解压到指定目录 tar -zxvf /Users/lode ...

  3. MySQL表单查询

    一.表单查询的语法 select 字段1.字段2....from 表名 where MySQL备份

  4. Vue-从入门到第三次世界大战_1

    前言:当然世界大战是大家都不希望看到的这里是代表我会一直更新下去 ,那我为什么要这么写,没错我就是标题党. 先说下Vue介绍: 官网:https://cn.vuejs.org/ 为什么用:因为是TMD ...

  5. 在 WPF 客户端实现 AOP 和接口缓存

    随着业务越来越复杂,最近决定把一些频繁查询但是数据不会怎么变更的接口做一下缓存,这种功能一般用 AOP 就能实现了,找了一下客户端又没现成的直接可以用,嗐,就只能自己开发了. 代理模式和AOP 理解代 ...

  6. 最强端口扫描器Nmap

    实验目的 利用nmap命令探测出目标系统开放的端口和服务类型. 实验原理 Nmap是一个综合的.功能全面的端口扫描工具主机发现:nmap可以用来查找目标网络中在线主机.默认情况下,nmap通过icmp ...

  7. 程序与CPU,内核,寄存器,缓存,RAM,ROM、总线、Cache line缓存行的作用和他们之间的联系?

    目录 缓存 什么是缓存 L1.L2.L3 为什么要设置那么多缓存.缓存在cup内还是cup外 MESI协议----主流的处理缓存和主存数据不一样问题 Cache line是什么已经 对编程中数组的影响 ...

  8. SVG小图片格式显示(字符图标,可设置title属性)

    1.HTML + Font 方式: 修改图标颜色只需修改字体颜色,修改图片大小只需修改字体大小. 关于字体图片,我们可以自己制作,也可以从网上下载 阿里巴巴矢量图库. 在线图标字体库.Icomoon. ...

  9. Ansible安装及初始化-从零到无

    --时间:2019年1月12日 --作者:飞翔的小胖猪 前言 说明 文档指导读者在Redhat系列操作系统上安装Ansible软件及初始化配置,包括服务端及被控端的配置文件设置. 以下所有操作都在An ...

  10. Pandas:从CSV中读取一个含有datetime类型的DataFrame、单项时间数据获取

    前言 有一个CSV文件test.csv,其中有一列是datetime类型,其他列是数值列,就像下边这样: 问题 1.读取该CSV文件,把datetime列转换为datetime类型,并将它设置为索引列 ...