/**
* <p>名称:IdWorker.java</p>
* <p>描述:分布式自增长ID</p>
* <pre>
* Twitter的 Snowflake JAVA实现方案
* </pre>
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
* <p>
* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
*
* @author Polim
*/
@Configuration
public class IdWorker {
// 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
private final static long twepoch = 1288834974657L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L;
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 数据中心ID最大值
private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 毫秒内自增位
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/* 上次生产id时间戳 */
private static long lastTimestamp = -1L;
// 0,并发控制
private long sequence = 0L; private final long workerId;
// 数据标识id部分
private final long datacenterId; public IdWorker(){
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
} /**
* @param workerId
* 工作机器ID
* @param datacenterId
* 序列号
*/
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} /**
* 获取下一个ID
*
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence; return nextId;
} private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} /**
* <p>
* 获取 maxWorkerId
* </p>
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuffer mpid = new StringBuffer();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (!name.isEmpty()) {
/*
* GET jvmPid
*/
mpid.append(name.split("@")[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
} /**
* <p>
* 数据标识id部分
* </p>
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
id = ((0x000000FF & (long) mac[mac.length - 1])
| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
} catch (Exception e) {
System.out.println(" getDatacenterId: " + e.getMessage());
}
return id;
}
}

使用时,用自动注入即可

@Autowired
private IdWorker idWorker;

分布式id生成器,雪花算法IdWorker的更多相关文章

  1. 生成主键ID,唯一键id,分布式ID生成器雪花算法代码实现

    工具类:  package com.ihrm.common.utils; import java.lang.management.ManagementFactory; import java.net. ...

  2. ID 生成器 雪花算法

    https://blog.csdn.net/wangming520liwei/article/details/80843248 ID 生成器 雪花算法 2018年06月28日 14:58:43 wan ...

  3. 适用于分布式ID的雪花算法

    基于Java实现的适用于分布式ID的雪花算法工具类,这里存一下日后好找 /** * 雪花算法生成ID */ public class SnowFlakeUtil { private final sta ...

  4. 分布式ID的雪花算法及坑

    分布式ID生成是目前系统的常见刚需,其中以Twitter的雪花算法(Snowflake)比较知名,有Java等各种语言的版本及各种改进版本,能生成满足分布式ID,返回ID为Long长整数 但是这里有一 ...

  5. 分布式ID生成 - 雪花算法

    雪花算法是一种生成分布式全局唯一ID的经典算法,关于雪花算法的解读网上多如牛毛,大多抄来抄去,这里请参考耕耘的小象大神的博客ID生成器,Twitter的雪花算法(Java) 网上的教程一般存在两个问题 ...

  6. 唯一ID生成器--雪花算法

    在微服务架构,分布式系统中的操作会有一些全局性ID的需求,所以我们不能用数据库本身的自增功能来产生主键值,只能由程序来生成唯一的主键值.我们采用的是twitter的snokeflake(雪花)算法. ...

  7. id生成器,分布式ID自增算法(Snowflake 算法)

    接口: /** * id生成器 */ public interface IdGenerator { String next(); } 实现类: /** * 分布式ID自增算法<br/> * ...

  8. 来吧,自己动手撸一个分布式ID生成器组件

    在经过了众多轮的面试之后,小林终于进入到了一家互联网公司的基础架构组,小林目前在公司有使用到架构组研究到分布式id生成器,前一阵子大概看了下其内部的实现,发现还是存在一些架构设计不合理之处.但是又由于 ...

  9. 全局ID生成--雪花算法

    分布式ID常见生成策略: 分布式ID生成策略常见的有如下几种: 数据库自增ID. UUID生成. Redis的原子自增方式. 数据库水平拆分,设置初始值和相同的自增步长. 批量申请自增ID. 雪花算法 ...

  10. 常用的分布式ID生成器

    为何需要分布式ID生成器 **本人博客网站 **IT小神 www.itxiaoshen.com **拿我们系统常用Mysql数据库来说,在之前的单体架构基本是单库结构,每个业务表的ID一般从1增,通过 ...

随机推荐

  1. ES6 - promise(2)

    从上一篇中我们知道promise的概念,上一篇也提到了 promise的过程: 启动异步任务 => 返回promise对象 =>给promise对象绑定回调函数(甚至可以在异步任务结束后指 ...

  2. NODE.JS exports require理解

    node.js exports 的作用是什么? 因为A.js文件想访问B.js文件中的类或函数,是不能直接访问的.为了解决这个问题 node.js 产生了 exports ,exports 实际可以理 ...

  3. C#.NET读取文本文件的几种办法

    一次读取一个字符 //文件路径 string filePath = @"C:\Users\Administrator\Downloads\test\test.txt"; //文本读 ...

  4. 一文搞懂Kafka的基本原理及使用

    Kafka的基本原理及使用 一.基本概念及原理 1.Kafka特点 Kafka 是一个分布式的流式平台,流式平台包括以下三个特点: 发布和订阅消息(流),类似于一个消息队列或企业消息系统 持久化收到的 ...

  5. go-zero微服务实战系列(四、CRUD热热身)

    上一篇文章我们把整个项目的架子搭建完成,服务在本地也已经能运行起来了,顺利成章的接下来我们就应该开始写业务逻辑代码了,但是单纯的写业务逻辑代码是比较枯燥的,业务逻辑的代码我会不断地补充到 lerbon ...

  6. Leetcode----<Re-Space LCCI>

    题解如下: /** * 动态规划解法: * dp[i] 表示 0-i的最小不能被识别的字母个数 * 求 dp[k] 如果第K个字母 不能和前面的字母[0-{k-1}]合在一起被识别 那么dp[k] = ...

  7. 『现学现忘』Docker基础 — 39、实战:自定义Tomcat9镜像

    目录 1.目标 2.准备 3.编写Dockerfile文件 4.构建镜像 5.启动镜像 6.验证容器是否能够访问 7.向容器中部署WEB项目,同时验证数据卷挂载 (1)准备一个简单的WEB项目 (2) ...

  8. JQuery中html(),val(),text()-的区别

    1.HTML html():取得第一个匹配元素的html内容.这个函数不能用于XML文档.但可以用于XHTML文档 html(val):设置每一个匹配元素的html内容.这个函数不能用于XML文档.但 ...

  9. 52 条 SQL 语句性能优化策略,建议收藏

    本文会提到 52 条 SQL 语句性能优化策略. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在where及order by涉及的列上建立索引. 2.应尽量避免在where子句中对字段进行nul ...

  10. Springboot 整合 MongoDB

    Springboot 整合 MongoDB 这节我们将整合 Spring Boot 与 Mongo DB 实现增删改查的功能,并且实现序列递增. Mongo DB 的基本介绍和增删改查的用法可以参考我 ...