一、引子

对于一个标量场数据,我们可以描绘轮廓(Contouring),包括2D和3D。2D的情况称为轮廓线(contour lines),3D的情况称为表面(surface)。他们都是等值线或等值面。

以下是一个2D例子:

为了生成轮廓,必须使用某种形式的插值。这是因为我们只在数据集中的一个有限点集上有标量值,而我们的等高线值可能位于这两个点的值之间。由于最常见的插值技术是线性插值,我们通过沿边缘的线性插值在轮廓表面上生成点。如果一条边在其两个端点上有标量值10和0,如果我们试图生成一条值为5的等高线,则边缘插值计算该等高线通过边缘的中点。

二、Marching cubes算法——从2D理解

运用了分治思想,对每个单元格(cell)独立地进行处理。该技术的基本假设是,一个轮廓只能以有限数量的方式通过一个单元格。我们可以构造一个案例表(case table),它枚举一个单元的所有可能的拓扑状态(topological state)。拓扑状态的数量取决于单元格顶点的数量,以及一个顶点相对于轮廓值可以具有的内部/外部关系的数量。标量值大于轮廓值的顶点被称为在轮廓之内。标量值小于轮廓值的顶点被称为在轮廓之外。例如,如果一个单元格有四个顶点,并且每个顶点可以在轮廓内部或外部,则有2^4 = 16种可能的方式通过单元格(在实现时可以用bit来实现)。在案例表中,我们不感兴趣的是轮廓通过单元格的位置(例如,geometrical intersection),感兴趣的只是它如何通过单元格(即单元格中轮廓的topology)。

一旦我们选择好属于哪一种case之后,就可以使用插值来计算contour line与cell edge相交的位置。该算法处理一个单元格,然后移动,或行进到下一个单元格。在访问所有单元格后,将完成轮廓。因此称为marching cubes。

算法的步骤如下:

1. Select a cell.
2. Calculate the inside / outside state of each vertex of the cell.
3. Create an index by storing the binary state of each vertex in a separate bit.
4. Use the index to look up the topological state of the cell in a case table.
5. Calculate the contour location (via interpolation) for each edge in the case table.
 
 这个过程将在每个单元格中构造独立的几何原元。在单元格边界处,可以创建重复的顶点和边。这些重复项可以通过使用一个特殊的重合点合并(point merging)操作来消除。请注意,沿着每条边的插值都应该在相同的方向上进行。若不这样,数值舍入很可能导致生成的点不完全一致(not precisely coincident),并且不能正确合并(merge)。这一步骤称为merge coincident points。
 
三、Marching cubes算法——3D情况
对于6面体,有8个顶点,因此有2^8 = 256中情况,又由于对称性,最后只保留15种情况,如下图:

 四、算法需要注意的事项

在2D中,轮廓模糊(ambiguos cases,如Fig6.5中的Case 5和Case 10)很容易处理:对于每个模糊的情况,我们选择实现两种可能的情况中的一种。根据选择的不同,轮廓可以延伸或打破当前的轮廓,如Fig 6.9所示。任何一种选择都是可以接受的,因为产生的等高线(contour line)将是连续的和封闭的(或将在数据集(data set)边界结束)。

在3D中,这个问题更为复杂。我们不能简单地选择一个独立于所有其他模糊案例的模糊案例。例如,Fig 6.9显示了如果我们不小心实现了两个相互独立的情况,会发生什么。在这个图中,我们使用了通常的情况3,但用它的互补情况替换了情况6。互补的情况是通过将“暗”顶点与“光”顶点交换而形成的。(这相当于将顶点标量值从等值面值以上切换到等值面值以下,反之亦然。)将这两种情况配对的结果是在等值面上留下了一个孔(hole)。

一个简单而有效的解决方案通过添加额外的互补案例(complementary cases),扩展了原来的15个marching cubes案例。这些情况被设计成与邻近的情况兼容,并防止在等值面上产生孔。需要6个互补的情况,分别对应于行进立方体的情况3、6、7、10、12和13。互补的行进立方体案例如Fig 6.10所示。

此外,尽管我们说该算法用于规则类型,如四边形和立方体,但marching cubes可以应用于任何拓扑上等同于立方体的单元类型(例如,六面体或非立方体体素)。

五、应用


Fig 6.11d是由marching cubes创建的等值面。图6.11b是一个来自计算机断层扫描(CT)x射线成像系统的恒定图像强度(image intensity)的表面。(图6.11a是该数据的二维子集。)其强度水平对应于人的骨骼。图6.11c为恒定流密度(flow density)的等值面。图6.11d为铁蛋白分子的电子势等值面。由于我们熟悉人体解剖学,图6.11b中所示的图像可以立即被识别出来。然而,对于计算流体动力学和分子生物学领域的从业者来说,图6.11c和图6.11d同样熟悉。正如这些例子所显示的,轮廓形成的方法是各领域可视化数据的强大而又通用的技术。

参考文档:VTKTextBook Scalar Algorithms

界面重建——Marching cubes算法的更多相关文章

  1. 图像数据到网格数据-1——Marching Cubes算法的一种实现

    概述 之前的博文已经完整的介绍了三维图像数据和三角形网格数据.在实际应用中,利用遥感硬件或者各种探测仪器,可以获得表征现实世界中物体的三维图像.比如利用CT机扫描人体得到人体断层扫描图像,就是一个表征 ...

  2. 水泡动画模拟(Marching Cubes)

    Marching Cubes算法是三维离散数据场中提取等值面的经典算法,其主要应用于医学领域的可视化场景,例如CT扫描和MRI扫描的3D重建等. 算法主要的思想是在三维离散数据场中通过线性插值来逼近等 ...

  3. Marching squares & Marching cubes

    提要 Marching squares 主要是用于从一个地图(用二维数组表示)生成轮廓的算法.Marching cubes则相应的是在空间生成网格的方法.最常见的应用就是天气预报中气压图的生成.还经常 ...

  4. 移动立方体算法(Marching cubes algorithm)

    百度百科: 医学图像三维重建的方法主要有两大类:一类是三维面绘制,另一类是三维体绘制.体绘制能够更真实地反映物体结构,但由于其运算量大,即使利用高性能的计算机也无法满足实际应用中交互操作的需要.因此, ...

  5. Marching squares 算法 获取轮廓(contour tracing)

    https://en.wikipedia.org/wiki/Marching_squares  http://blog.csdn.net/coolingcoding/article/details/1 ...

  6. 基于面绘制的MC算法以及基于体绘制的 Ray-casting 实现Dicom图像的三维重建(python实现)

    加入实验室后,经过张老师的介绍,有幸与某公司合共共同完成某个项目,在此项目中我主要负责的是三维 pdf 报告生成.Dicom图像上亮度.对比度调整以及 Dicom图像三维重建.今天主要介绍一下完成Di ...

  7. 三维等值面提取算法(Dual Contouring)

    上一篇介绍了Marching Cubes算法,Marching Cubes算法是三维重建算法中的经典算法,算法主要思想是检测与等值面相交的体素单元并计算交点的坐标,然后对不同的相交情况利用查找表在体素 ...

  8. 从点云到网格(三)Poisson重建

    Possion重建是Kazhdan等2006年提出的网格重建方法[1].Possion重建的输入是点云及其法向量,输出是三维网格.Poisson有公开的源代码[2].PCL中也有Poisson的实现. ...

  9. 什么是体数据可视化(Volume data visualization)?及体绘制的各种算法和技术的特点?

    该文对体数据进行综述,并介绍了体数据的各种算法和技术的特点. 前言 由于3D数据采集领域的高速发展,以及在具有交互式帧率的现代化工作站上执行高级可视化的可能性,体数据的重要性将继续迅速增长. 数据集可 ...

  10. PCL源码剖析之MarchingCubes算法

    原文:http://blog.csdn.net/lming_08/article/details/19432877 MarchingCubes算法简介 MarchingCubes(移动立方体)算法是目 ...

随机推荐

  1. 3-1 熟悉Hadoop及其操作

    Hadoop最早起源于Nutch.Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取.索引.查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题--如何解决数十亿网页的存储和索引 ...

  2. Vue父子组件传值——第一次传不过去之“怪象”?

    前言:最近写Vue父子组件传值出现第一次传不过去之"怪象",以为Vue的BUG呢.然则,是自己太菜"^_^"!!!特此记录以警己 <spec-param& ...

  3. Linux下C语言程序的内存布局

    在<虚拟地址空间以及编译模式>一节中讲到,虚拟地址空间在32位环境下的大小为 4GB,在64位环境下的大小为 256TB,那么,一个C语言程序的内存在整个地址空间中是如何分布的呢?数据在哪 ...

  4. Node.js server使用

    一.创建项目 #创建项目目录 cd /data mkdir webroot cd webroot #初始化git git init vim .gitignore 输入: node_modules/ 保 ...

  5. msfconsole的使用

    msfconsole是metasploit中的一个工具: msfconsole集成了很多漏洞的利用的脚本,并且使用起来很简单的网络安全工具 在终端输入msfconsole命令即可进入msf的控制台,m ...

  6. Java笔记第十二弹

    Lambda表达式的标准格式 三要素:形式参数.箭头.代码块 格式:(形式参数)->(代码块) 形式参数:如果有多个参数,参数之间用逗号隔开:如果没有参数,留空即可 ->代表指向动作 La ...

  7. 关于IDEA发出基于APR的本地库加载失败错误的解决------->求解决!

    问题描述 在没有使用Maven项目启动该Project时,Tomcat可以正常使用,但在这里会显示这样的错误: 这个错误,已经查了两天了,相关文件以及解决方法已经翻烂了,还没有解决,放出来集思广益一下 ...

  8. 对于实现上一篇遇到的问题——MyBatis+增删改查(已解决)

    问题一:该Http不支持Get/Post方法 我根据网上的解决方法将Get和Post的位置来回换,还是不停报错: 后来偶然间看到一个博主发的"你的代码写在Get或者Post里面,就将没写代码 ...

  9. ZOJ 3735 Josephina and RPG (概率dp)

    题意:给你一个n,然后给你C(n,3)个队伍, 给你每个队伍之间的胜率. 接下来给你m个队伍,让你依次跟他们比赛,开始你能选择任意的队伍,如果你打赢了一支队伍,你可以选择换成输给你的这个队伍或者不换, ...

  10. Django笔记四之字段属性

    这篇笔记介绍的 field options,也就是 字段的选项属性. 首先,关于 model,是数据库与 python 代码里的一个映射关系,每一个 model 是django.db.models.M ...