tensorflow-gpu版本安装及深度神经网络训练与cpu版本对比
tensorflow1.0和tensorflow2.0的区别主要是1.0用的静态图
一般情况1.0已经足够,但是如果要进行深度神经网络的训练,当然还是tensorflow2.*-gpu比较快啦。
其中tensorflow有CPU和GPU两个版本(2.0安装方法),
CPU安装比较简单:
pip install tensorflow-cpu
一、查看显卡
日常CPU足够,想用GPU版本,要有NVIDIA的显卡,查看显卡方式如下:

二、查看版本对应关系
然后我们需要去下载NVIDIA驱动CUDA以及支持神经网络训练的CUDNN模块:(重点,其中需要查看自己NVIDIA版本 Python版本 CUDNN版本是否匹配)

下载CUDA:https://developer.nvidia.com/cuda-11.3.0-download-archive
三、安装cudnn
CUDA安装完毕后,需要安装支持神经网络训练的CUDNN模块,下载 cuDNN,下载之前需要先注册一下 Nvidia 的账号,下载地址为:https://developer.nvidia.com/rdp/cudnn-download
下载完成之后将其解压,解压之后的目录如下:

需要将以上三个文件复制到CUDA的安装目录中,通过上面的安装,我们将CUDA安装到了C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3中。
四、安装anaconda
安装Anaconda:
然后最好是使用anaconda安装tensorflow,先去安装anaconda,详细教程传送门:https://blog.csdn.net/fan18317517352/article/details/123035625
其实如果不想麻烦的配置环境变量,可以在安装Anaconda过程中选择JUST ME, 然后将Anaconda加入环境变量。

然后直接就可以在anaconda里选择tensorflow-gpu进行安装,安装完毕后,查看能否支持gpu:
import os
import tensorflow as tf
print(tf.test.is_gpu_available())
gpus = tf.config.list_physical_devices('GPU')
cpus = tf.config.list_physical_devices('CPU')
print(gpus, cpus)
from tensorflow.python.client import device_lib print(device_lib.list_local_devices())
如果输出如下,则说明可以使用GPU
(注意,真的只是可以使用,不代表可以用了,自己体会,我曾经被坑了好久):

五、测试(重点干货来了)
import os # 指定使用0卡
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
如果提示缺少dll文件,去这个网址找:https://cn.dll-files.com/cudart64_110.dll.html 缺啥找啥,看链接后缀
然后训练模型,发现只能训练前馈神经网络,速度还很慢,训练深度网络时,直接内存不足,但原因可能是由于缺少文件:
Process finished with exit code -1073740791 (0xC0000409)

解决办法:Pycharm中,点击RUN-EDIT CONFIGURATIONS,输出错误信息

发现缺少文件:

下载zlib并且解压

dll放到cuda安装目录的bin里,lib放到cuda安装目录的lib文件夹下,然后开始训练,你会发现用GPU真香
CPU耗时:

GPU耗时:

切换CPU GPU 只要切换设备就行了,我只进行了2epoch的卷积训练,可以看到GPU速度要比CPU快个4 5 倍左右,如果是前馈神经网络或者简单的神经网络,测试验证使用CPU是被GPU要快的,所以自己需要根据实际情况切换设备。
需要zlib文件的可以给我留言。
tensorflow-gpu版本安装及深度神经网络训练与cpu版本对比的更多相关文章
- 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”
来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...
- "如何用70行Java代码实现深度神经网络算法" 的delphi版本
http://blog.csdn.net/hustjoyboy/article/details/50721535 "如何用70行Java代码实现深度神经网络算法" 的delphi ...
- Ubuntu 16.04 + CUDA 8.0 + cuDNN v5.1 + TensorFlow(GPU support)安装配置详解
随着图像识别和深度学习领域的迅猛发展,GPU时代即将来临.由于GPU处理深度学习算法的高效性,使得配置一台搭载有GPU的服务器变得尤为必要. 本文主要介绍在Ubuntu 16.04环境下如何配置Ten ...
- Win10下 tensorflow gpu版安装
准备: 系统环境: windows10 + Anaconda3 + Pycharm (1)环境配置: 打开Anaconda Prompt,输入清华仓库镜像,这样更新会快一些: 输入: conda co ...
- 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...
- 『TensorFlow2.0正式版教程』极简安装TF2.0正式版(CPU&GPU)教程
0 前言 TensorFlow 2.0,今天凌晨,正式放出了2.0版本. 不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了. 本篇文章就 ...
- TensorFlow GPU版本的安装与调试
笔者采用python3.6.7+TensorFlow1.12.0+CUDA10.0+CUDNN7.3.1构建环境 PC端配置为GTX 1050+Intel i7 7700HQ 4核心8线程@2.8GH ...
- 【转】Ubuntu 16.04安装配置TensorFlow GPU版本
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...
- Tensorflow检验GPU是否安装成功 及 使用GPU训练注意事项
1. 已经安装cuda但是tensorflow仍然使用cpu加速的问题 电脑上同时安装了GPU和CPU版本的TensorFlow,本来想用下面代码测试一下GPU程序,但无奈老是没有调用GPU. imp ...
随机推荐
- Odoo14 Error: While parsing modifiers for page: for modifier "invisible": fieldValue.indexOf is not a function
1 Traceback: 2 Error: While parsing modifiers for page: for modifier "invisible": fieldVal ...
- vue脚手架创建项目后使用路由报错Object(...) is not a function问题
在这之前我做过的vue项目没有这种问题,今天突然出现这个问题,也检查了很久的代码,最后解决我也不知道我是哪一步做错了 首先我是创建的vue2项目,基本操作跟平常一样,在运用路由跳转的时候遇到这个问题 ...
- Taurus.MVC WebAPI 入门开发教程5:控制器安全校验属性【HttpGet、HttpPost】【Ack】【Token】【MicroService】。
系列目录 1.Taurus.MVC WebAPI 入门开发教程1:框架下载环境配置与运行. 2.Taurus.MVC WebAPI 入门开发教程2:添加控制器输出Hello World. 3.Tau ...
- 用好JAVA中的函数式接口,轻松从通用代码框架中剥离掉业务定制逻辑
大家好,又见面了. 今天我们一起聊一聊JAVA中的函数式接口.那我们首先要知道啥是函数式接口.它和JAVA中普通的接口有啥区别?其实函数式接口也是一个Interface类,是一种比较特殊的接口类,这个 ...
- 使用three.js(webgl)搭建智慧楼宇、设备检测、数字孪生——第十三课
老子云:有道无术,术尚可求,有术无道,止于术. 咱开篇引用老子的话术,也没其它意思,只是最近学习中忽有感悟,索性就写了上来. 这句话用现代辩证思维理解,这里的"道" 大抵是指方法论 ...
- JavaScript基础回顾知识点记录2
js 使用嵌套for循环输出三角形 for(var i=0; i<5; i++){ //正三角 // for(var j=0; j<i+1; j++){ // document.write ...
- Math_Music
查看代码 #REmoo的优化任务 #1.公式写在<formula_set>类中,统一管理 --- Finished 2022.8.15 12:39 #2.建立<sample_set& ...
- 【java】学习路线1-类型转换、隐式转换、强制转换
/**文档注释,这里是一段文章一般放在类的外面*/public class HelloWorld{ //这个是注释的文本 public static void main(String[] ...
- KingbaseES V8R6集群维护案例之---将securecmdd通讯改为ssh案例
案例说明: 在KingbaseES V8R6的后期版本中,为了解决有的主机之间不允许root用户ssh登录的问题,使用了securecmdd作为集群部署分发和通讯的服务,有生产环境通过漏洞扫描,在88 ...
- KingbaseES TOAST存储方式
KingbaseES为"大字段"的物理存储提供了TOAST功能,通过合适的配置策略能够减少IO次数和扫描块数,进而提升查询速度. TOAST:The Oversized-Attri ...