常见几种排序的算法:

归并排序

归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。

具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的了。然后将这些有序的子元素进行合并。

合并的过程就是 对 两个已经排好序的子序列,先选取两个子序列中最小的元素进行比较,选取两个元素中最小的那个子序列并将其从子序列中

去掉添加到最终的结果集中,直到两个子序列归并完成。

代码如下:

#!/usr/bin/python
import sys def merge(nums, first, middle, last):
''''' merge '''
# 切片边界,左闭右开并且是了0为开始
lnums = nums[first:middle+1]
rnums = nums[middle+1:last+1]
lnums.append(sys.maxint)
rnums.append(sys.maxint)
l = 0
r = 0
for i in range(first, last+1):
if lnums[l] < rnums[r]:
nums[i] = lnums[l]
l+=1
else:
nums[i] = rnums[r]
r+=1
def merge_sort(nums, first, last):
''''' merge sort
merge_sort函数中传递的是下标,不是元素个数
'''
if first < last:
middle = (first + last)/2
merge_sort(nums, first, middle)
merge_sort(nums, middle+1, last)
merge(nums, first, middle,last) if __name__ == '__main__':
nums = [10,8,4,-1,2,6,7,3]
print 'nums is:', nums
merge_sort(nums, 0, 7)
print 'merge sort:', nums

稳定,时间复杂度 O(nlog n)

插入排序


代码如下:

#!/usr/bin/python
import sys def insert_sort(a):
''''' 插入排序
有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,
但要求插入后此数据序列仍然有序。刚开始 一个元素显然有序,然后插入一
个元素到适当位置,然后再插入第三个元素,依次类推
'''
a_len = len(a)
if a_len = 0 and a[j] > key:
a[j+1] = a[j]
j-=1
a[j+1] = key
return a if __name__ == '__main__':
nums = [10,8,4,-1,2,6,7,3]
print 'nums is:', nums
insert_sort(nums)
print 'insert sort:', nums

稳定,时间复杂度 O(n^2)

交换两个元素的值python中你可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组

(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。

选择排序


选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到

排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所

有元素均排序完毕。

import sys
def select_sort(a):
''''' 选择排序
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,
顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序是不稳定的排序方法。
'''
a_len=len(a)
for i in range(a_len):#在0-n-1上依次选择相应大小的元素
min_index = i#记录最小元素的下标
for j in range(i+1, a_len):#查找最小值
if(a[j]<a[min_index]):
min_index=j
if min_index != i:#找到最小元素进行交换
a[i],a[min_index] = a[min_index],a[i] if __name__ == '__main__':
A = [10, -3, 5, 7, 1, 3, 7]
print 'Before sort:',A
select_sort(A)
print 'After sort:',A

不稳定,时间复杂度 O(n^2)

希尔排序


希尔排序,也称递减增量排序算法,希尔排序是非稳定排序算法。该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。

先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行排序;

然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。

import sys
def shell_sort(a):
''''' shell排序
'''
a_len=len(a)
gap=a_len/2#增量
while gap>0:
for i in range(a_len):#对同一个组进行选择排序
m=i
j=i+1
while j<a_len:
if a[j]<a[m]:
m=j
j+=gap#j增加gap
if m!=i:
a[m],a[i]=a[i],a[m]
gap/=2 if __name__ == '__main__':
A = [10, -3, 5, 7, 1, 3, 7]
print 'Before sort:',A
shell_sort(A)
print 'After sort:',A

不稳定,时间复杂度 平均时间 O(nlogn) 最差时间O(n^s)1<s<2

堆排序 ( Heap Sort )


"堆”的定义:在起始索引为 0 的“堆”中:

节点 i 的右子节点在位置 2 * i + 24) 节点 i 的父节点在位置 floor( (i - 1) / 2 )   : 注 floor 表示“取整”操作

堆的特性:

每个节点的键值一定总是大于(或小于)它的父节点

“最大堆”:

“堆”的根节点保存的是键值最大的节点。即“堆”中每个节点的键值都总是大于它的子节点。

上移,下移 :

当某节点的键值大于它的父节点时,这时我们就要进行“上移”操作,即我们把该节点移动到它的父节点的位置,而让它的父节点到它的位置上,然后我们继续判断该节点,直到该节点不再大于它的父节点为止才停止“上移”。

现在我们再来了解一下“下移”操作。当我们把某节点的键值改小了之后,我们就要对其进行“下移”操作。

方法:

我们首先建立一个最大堆(时间复杂度O(n)),然后每次我们只需要把根节点与最后一个位置的节点交换,然后把最后一个位置排除之外,然后把交换后根节点的堆进行调整(时间复杂度 O(lgn) ),即对根节点进行“下移”操作即可。 堆排序的总的时间复杂度为O(nlgn).

代码如下:

#!/usr/bin env python  

# 数组编号从 0开始
def left(i):
return 2*i +1
def right(i):
return 2*i+2 #保持最大堆性质 使以i为根的子树成为最大堆
def max_heapify(A, i, heap_size):
if heap_size <= 0:
return
l = left(i)
r = right(i)
largest = i # 选出子节点中较大的节点
if l A[largest]:
largest = l
if r A[largest]:
largest = r
if i != largest :#说明当前节点不是最大的,下移
A[i], A[largest] = A[largest], A[i] #交换
max_heapify(A, largest, heap_size)#继续追踪下移的点
#print A
# 建堆
def bulid_max_heap(A):
heap_size = len(A)
if heap_size >1:
node = heap_size/2 -1
while node >= 0:
max_heapify(A, node, heap_size)
node -=1 # 堆排序 下标从0开始
def heap_sort(A):
bulid_max_heap(A)
heap_size = len(A)
i = heap_size - 1
while i > 0 :
A[0],A[i] = A[i], A[0] # 堆中的最大值存入数组适当的位置,并且进行交换
heap_size -=1 # heap 大小 递减 1
i -= 1 # 存放堆中最大值的下标递减 1
max_heapify(A, 0, heap_size) if __name__ == '__main__' : A = [10, -3, 5, 7, 1, 3, 7]
print 'Before sort:',A
heap_sort(A)
print 'After sort:',A

不稳定,时间复杂度 O(nlog n)

快速排序


快速排序算法和合并排序算法一样,也是基于分治模式。对子数组A[p...r]快速排序的分治过程的三个步骤为:

分解:把数组A[p...r]分为A[p...q-1]与A[q+1...r]两部分,其中A[p...q-1]中的每个元素都小于等于A[q]而A[q+1...r]中的每个元素都大于等于A[q];

解决:通过递归调用快速排序,对子数组A[p...q-1]和A[q+1...r]进行排序;

合并:因为两个子数组是就地排序的,所以不需要额外的操作。

对于划分partition 每一轮迭代的开始,x=A[r], 对于任何数组下标k,有:

1) 如果p≤k≤i,则A[k]≤x。

2) 如果i+1≤k≤j-1,则A[k]>x。

3) 如果k=r,则A[k]=x。

代码如下:

#!/usr/bin/env python
# 快速排序
'''''
划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,
比A[r]大的放在右边
快速排序的分治partition过程有两种方法,
一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,
另一种方法是两个指针从首位向中间扫描的方法。
'''
#p,r 是数组A的下标
def partition1(A, p ,r):
'''''
方法一,两个指针索引一前一后逐步向后扫描的方法
'''
x = A[r]
i = p-1
j = p
while j < r:
if A[j] < x:
i +=1
A[i], A[j] = A[j], A[i]
j += 1
A[i+1], A[r] = A[r], A[i+1]
return i+1 def partition2(A, p, r):
'''''
两个指针从首尾向中间扫描的方法
'''
i = p
j = r
x = A[p]
while i = x and i < j:
j -=1
A[i] = A[j]
while A[i]<=x and i < j:
i +=1
A[j] = A[i]
A[i] = x
return i # quick sort
def quick_sort(A, p, r):
'''''
快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)
'''
if p < r:
q = partition2(A, p, r)
quick_sort(A, p, q-1)
quick_sort(A, q+1, r) if __name__ == '__main__': A = [5,-4,6,3,7,11,1,2]
print 'Before sort:',A
quick_sort(A, 0, 7)
print 'After sort:',A

不稳定,时间复杂度 最理想 O(nlogn)最差时间O(n^2)

说下python中的序列:

列表、元组和字符串都是序列,但是序列是什么,它们为什么如此特别呢?序列的两个主要特点是索引操作符和切片操作符。索引操作符让我们可以从序列中抓取一个特定项目。切片操作符让我们能够获取序列的一个切片,即一部分序列,如:a = ['aa','bb','cc'], print a[0] 为索引操作,print a[0:2]为切片操作。

转自:https://my.oschina.net/liuyuantao/blog/749329

用 python 实现各种排序算法(转)的更多相关文章

  1. Python实现各种排序算法的代码示例总结

    Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示 ...

  2. Python实现常用排序算法

    Python实现常用排序算法 冒泡排序 思路: 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完 ...

  3. python 的常见排序算法实现

    python 的常见排序算法实现 参考以下链接:https://www.cnblogs.com/shiluoliming/p/6740585.html 算法(Algorithm)是指解题方案的准确而完 ...

  4. python基础===八大排序算法的 Python 实现

    本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一 ...

  5. python实现简单排序算法

    算法 递归两个特点: 调用自身 有穷调用 计算规模越来越小,直至最后结束 用装饰器修饰一个递归函数时会出现问题,这个问题产生的原因是递归的函数也不停的使用装饰器.解决方法是,只让装饰器调用一次即可,那 ...

  6. Python实现八大排序算法(转载)+ 桶排序(原创)

    插入排序 核心思想 代码实现 希尔排序 核心思想 代码实现 冒泡排序 核心思想 代码实现 快速排序 核心思想 代码实现 直接选择排序 核心思想 代码实现 堆排序 核心思想 代码实现 归并排序 核心思想 ...

  7. python实现桶排序算法

    桶排序算法也是一种可以以线性期望时间运行的算法,该算法的原理是将数组分到有限数量的桶里,每个桶再分别排序. 它的算法流程如下所示: 设置一个定量的数组当作空桶子. 寻访序列,并且把项目一个一个放到对应 ...

  8. 用python实现各种排序算法

    最简单的排序有三种:插入排序,选择排序和冒泡排序.它们的平均时间复杂度均为O(n^2),在这里对原理就不加赘述了. 贴出源代码: 插入排序: def insertion_sort(sort_list) ...

  9. python实现八大排序算法

    插入排序 核心思想 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2).是稳定的排序方法.插入算法 ...

随机推荐

  1. ngrok 外网访问小能手

    以前在学校的时候想把自己做的网站发布让外网访问,可是又没有虚拟服务器和域名就显得异常的麻烦,曾经试过花生壳映射,效果虽然还不错,但是略显麻烦.今天找到一个更方便的小工具--ngrok ! 简单的介绍一 ...

  2. MVC Action返回Json

    Action [HttpPost]         public ActionResult Edit(Study_CourseHourModel model)         {            ...

  3. 用OOP设计以下场景。太阳发出太阳光,照射在墙壁上,在地面形成影子。

    首先分析出有哪些实体类,太阳.太阳光.墙壁.地面.影子 然后分析太阳应该继承自发光体类.太阳光继承自光类.墙壁继承自物体类 地面是一个承载影子的容器.

  4. ajax异步处理时,如何在JS中获取从Servlet或者Action中session,request

    ssh项目中,我需要登陆某个页面(如a.jsp),通过onblur()鼠标失去焦点后来触发js函数(函数是ajax请求)请求到相应的action,处理完成后将数据存放到session对象里面,然后在a ...

  5. Visual Studio C#的winform/webform/asp.net控件命名规范

    控件命名规范 类型 前缀 示例 AdRotator adrt adrtTopAd Button btn btnSubmit Calendar cal calMettingDates CheckBox ...

  6. CSS 笔记二(Text/Fonts/Links/Lists)

    CSS Text 1> Text Color used to set the color of the text 2> Text Alignment used to set the hor ...

  7. 初识python第二天(2)

    整理Python常见数据类型内置函数的使用方法如下: 一.int 首先我们来查看一下int包含了哪些函数 #python3.x print(dir(int)) #['__abs__', '__add_ ...

  8. 给tabBar设置图片和字体颜色的几种方法

    现在很多应用都使用到了tabBar,我们往往在给tabBar设置图片和字体的时候,当选中状态下,往往字体的颜色和图片的颜色不匹配,有时候就显得无从下手,我也常常忘了,所有写这个博客的目的,相当于给自己 ...

  9. CSS3响应式布局之弹性盒子

    CSS3弹性盒模型可以轻松的创建自适应浏览器流动窗口的布局或自适应字体大小的布局.同时该盒子决定了一个盒子在其他盒子的分布方式,及如何处理可用的空间. 自己写了一个弹性盒子的demo: 主要HTML代 ...

  10. (原创)关于SQL Server 2005 的自动远程数据库备份

    由于项目需要,需要对目标服务器上的数据库每天进行备份并转移,查阅网上的一些帮助,结合自己的实际需要,写了这篇文章,希望对有同样需求的朋友有所帮助.目标服务器:192.168.1.197,备份服务器:1 ...