题目大概说给一个n×n的方格,边有权值,问从求(1,1)到(n,n)的最小割。

点达到了160000个,直接最大流不好。这题的图是平面图,求最小割可以转化成求其对偶图的最短路,来更高效地求解:

首先源点汇点间新加一条边,然后构造其对偶图:

  • 面作为对偶图的点;而源点到汇点之间新加的边划分出来的两个面分别作为对偶图的源点和汇点
  • 如果两个面之间有边则两个面在对偶图对应的点连边,权值为原来的边权;去掉对偶图源点和汇点之间边

这样可以发现,对偶图的源点到汇点的一条路径就对应这原图的源点到汇点的一个割边集,而最短路就对应最小割了。所以求一下最小割就OK了,我用SPFA好像超时了,改用堆优化的Dijkstra,10W个点OK。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 1111*1111
struct Edge{
int v,w,next;
}edge[MAXN<<];
int vs,vt,NV,NE,head[MAXN];
void addEdge(int u,int v,int w){
edge[NE].v=v; edge[NE].w=w; edge[NE].next=head[u];
head[u]=NE++;
}
struct Node{
int u,d;
Node(int _u=,int _d=):u(_u),d(_d){}
bool operator<(const Node &nd)const{
return nd.d<d;
}
};
int d[MAXN];
bool vis[MAXN];
int dijkstra(){
for(int i=; i<NV; ++i){
d[i]=INF; vis[i]=;
}
d[vs]=;
priority_queue<Node> que;
que.push(Node(vs,));
while(!que.empty()){
Node nd=que.top(); que.pop();
if(nd.u==vt) return nd.d;
if(vis[nd.u]) continue;
vis[nd.u]=;
for(int i=head[nd.u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(vis[v]) continue;
if(d[v]>d[nd.u]+edge[i].w){
d[v]=d[nd.u]+edge[i].w;
que.push(Node(v,d[v]));
}
}
}
return INF;
}
int a[][];
int main(){
int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
if(n==){
puts("");
continue;
}
vs=(n-)*(n-); vt=vs+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<n; ++i){
for(int j=; j<n; ++j){
scanf("%d",&a[i][j]);
}
}
for(int i=; i<n-; ++i){
for(int j=; j<n; ++j){
if(j==){
addEdge(vs,i*(n-)+j,a[i][j]);
}else if(j==n-){
addEdge(i*(n-)+j-,vt,a[i][j]);
}else{
addEdge(i*(n-)+j,i*(n-)+j-,a[i][j]);
addEdge(i*(n-)+j-,i*(n-)+j,a[i][j]);
}
}
}
for(int j=; j<n-; ++j){
for(int i=; i<n; ++i){
if(i==){
addEdge(i*(n-)+j,vt,a[i][j]);
}else if(i==n-){
addEdge(vs,(i-)*(n-)+j,a[i][j]);
}else{
addEdge(i*(n-)+j,(i-)*(n-)+j,a[i][j]);
addEdge((i-)*(n-)+j,i*(n-)+j,a[i][j]);
}
}
}
printf("%d\n",dijkstra());
}
return ;
}

HDU3870 Catch the Theves(平面图最小割转最短路)的更多相关文章

  1. 【BZOJ1001】狼抓兔子(平面图最小割转最短路)

    题意:有一张平面图,求它的最小割.N,M.表示网格的大小,N,M均小于等于1000. 左上角点为(1,1),右下角点为(N,M).有以下三种类型的道路  1:(x,y)<==>(x+1,y ...

  2. hdu3870-Catch the Theves(平面图最小割)

    Problem Description A group of thieves is approaching a museum in the country of zjsxzy,now they are ...

  3. hdu 3870(平面图最小割转最短路)

    Catch the Theves Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65768/32768 K (Java/Others) ...

  4. BZOJ1001 [BeiJing2006]狼抓兔子(平面图最小割转最短路)

    ..和HDU3870类似..注意n=1和m=1的情况. #include<cstdio> #include<cstring> #include<queue> #in ...

  5. BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路

    问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...

  6. tyvj P1209 - 拦截导弹 平面图最小割&&模型转化

    P1209 - 拦截导弹 From admin    Normal (OI)总时限:6s    内存限制:128MB    代码长度限制:64KB 背景 Background 实中编程者联盟为了培养技 ...

  7. [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】

    题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...

  8. B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij

    B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向 ...

  9. Luogu2046 NOI2010 海拔 平面图、最小割、最短路

    传送门 首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\) 那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\ ...

随机推荐

  1. [Android Pro] Toolbar的完全自定义

    reference to : http://blog.csdn.net/elder_sword/article/details/46634751 Toolbar是什么,不知道的可以去大神的博客瞻仰下 ...

  2. Spring学习笔记—最小化Spring XML配置

    自动装配(autowiring)有助于减少甚至消除配置<property>元素和<constructor-arg>元素,让Spring自动识别如何装配Bean的依赖关系. 自动 ...

  3. sprintf_s的使用

    int sprintf_s(char *restrict buffer, rsize_t bufsz,              const char *restrict format, ...); ...

  4. 苹果开发者账号申请时报错提示错误:Legal Entity Name

    he information you entered did not match your profile in the D&B database. Before submitting you ...

  5. GMap.Net开发之在地图上添加多边形

    上一篇介绍了在GMap上添加自定义标签(GMapMarker),这篇介绍在GMap上添加多边形(GMapPolyogn),并且介绍如何在地图上画任意的多边形. 如果已经知道了多边形的各个点的位置,就可 ...

  6. java中 this 和super的用法

    通过用static来定义方法或成员,为我们编程提供了某种便利,从某种程度上可以说它类似于C语言中的全局函数和全局变量.但是,并不是说有了这种便利,你便可以随处使用,如果那样的话,你便需要认真考虑一下自 ...

  7. error C2039: “bind2nd”: 不是“std”的成员

    VS2012 出现如下错误: error C2039: "bind2nd": 不是"std"的成员     头文件中加上 #include <functi ...

  8. Apache与Tomcat联系及区别(转)

    Apache与Tomcat都是Apache开源组织开发的用于处理HTTP服务的项目,两者都是免费的,都可以做为独立的Web服务器运行.Apache是Web服务器而Tomcat是Java应用服务器. A ...

  9. 【微信Java开发 --1】内网穿透外网,使用外网域名可以访问到本地项目

    1.首先上https://natapp.cn/ 2.接下来在网站申请账号 3.购买免费隧道 4.为你的免费隧道设置名称以及端口号,由于本人本地的使用Tomcat做服务器,所以用惯了8080端口,因此设 ...

  10. JSON语法简介 介绍 json

    JSON 指的是 JavaScript 对象表示法(JavaScript Object Notation),类似 XML,但比 XML 更小.更快,更易解析. 实例 { "employees ...