POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)
LCA问题 详细
1、二叉搜索树上找两个节点LCA
public int query(Node t, Node u, Node v) {
int left = u.value;
int right = v.value;
//二叉查找树内,如果左结点大于右结点,不对,交换
if (left > right) {
int temp = left;
left = right;
right = temp;
}
while (true) {
//如果t小于u、v,往t的右子树中查找
if (t.value < left) {
t = t.right;
//如果t大于u、v,往t的左子树中查找
} else if (t.value > right) {
t = t.left;
} else {
return t.value;
}
}
}
2、二叉树上找两个节点
node* getLCA(node* root, node* node1, node* node2)
{
if(root == null)
return null;
if(root== node1 || root==node2)
return root; node* left = getLCA(root->left, node1, node2);
node* right = getLCA(root->right, node1, node2); if(left != null && right != null) // 两个点在root的左右两边,就是root了
return root;
else if(left != null) // 哪边不空返回哪边
return left;
else if (right != null)
return right;
else
return null;
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int Max = ;
int t, n, first, second, root;
vector<int> G[Max];
int indegree[Max], depth[Max], father[Max];
void inputTree()
{
for (int i = ; i <= n; i++)
{
G[i].clear();
father[i] = ;
indegree[i] = ;
depth[i] = ;
}
int u, v;
for (int i = ; i < n; i++)
{
scanf("%d%d", &u, &v);
G[u].push_back(v);
indegree[v]++;
father[v] = u;
}
scanf("%d%d", &first, &second);
for (int i = ; i <= n; i++)
{
if (indegree[i] == )
{
root = i;
break;
}
}
}
void dfs_depth(int u, int dep)
{
depth[u] = dep;
int Size = G[u].size();
for (int i = ; i < Size; i++)
{
dfs_depth(G[u][i], dep + );
}
}
int find_ancestor()
{
while (depth[first] > depth[second])
{
first = father[first];
}
while (depth[first] < depth[second])
{
second = father[second];
}
while (first != second) // 这样直接返回first
{
first = father[first];
second = father[second];
}
return first;
}
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
inputTree();
dfs_depth(root, );
printf("%d\n", find_ancestor());
}
return ;
}
tarjan + 并查集 解法:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int Max = ;
int t, n, first, second, root;
vector<int> G[Max], querry[Max];
int indegree[Max], father[Max], vis[Max];
void inputTree()
{
for (int i = ; i <= n; i++)
{
G[i].clear();
querry[i].clear();
father[i] = i;
indegree[i] = ;
vis[i] = ;
}
int u, v;
for (int i = ; i < n; i++)
{
scanf("%d%d", &u, &v);
G[u].push_back(v);
indegree[v]++;
}
scanf("%d%d", &first, &second);
querry[first].push_back(second);
querry[second].push_back(first);
for (int i = ; i <= n; i++)
{
if (indegree[i] == )
{
root = i;
break;
}
}
}
int find_father(int x)
{
if (x == father[x])
return x;
return father[x] = find_father(father[x]);
}
void unionSet(int x, int y)
{
x = find_father(x);
y = find_father(y);
if (x != y)
father[y] = x;
}
void tarjan(int x)
{
int Size = G[x].size();
for (int i = ; i < Size; i++)
{
int v = G[x][i];
tarjan(v);
unionSet(x, v);
}
vis[x] = ;
/*
if (x == first && vis[second])
printf("%d\n", find_father(second));
else if (x == second && vis[first])
printf("%d\n", find_father(first));
*/
Size = querry[x].size();
for (int i = ; i < Size; i++)
{
if (vis[querry[x][i]])
{
printf("%d\n", find_father(querry[x][i]));
return;
}
} }
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
inputTree();
tarjan(root);
}
return ;
}
POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)的更多相关文章
- POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题
A rooted tree is a well-known data structure in computer science and engineering. An example is show ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 18136 Accept ...
- poj 1330 Nearest Common Ancestors 求最近祖先节点
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 37386 Accept ...
- POJ 1330 Nearest Common Ancestors(Targin求LCA)
传送门 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26612 Ac ...
- POJ 1330 Nearest Common Ancestors (模板题)【LCA】
<题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
随机推荐
- 《深入理解Spark:核心思想与源码分析》(第2章)
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...
- 学习SQLite之路(三)
20160616更新 参考: http://www.runoob.com/sqlite/sqlite-tutorial.html 1. SQLite PRAGMA:可以用在 SQLite 环境内控制 ...
- NodeJs爬虫—“眼睛好看是一种什么样的体验?”
逛知乎的时候经常看见有好多的福利贴(钓鱼贴),这不最近又让我发现了一个——眼睛好看是一种什么样的体验是一种怎么样的体验呢?我决定把答案里的照片都下到我的电脑里好好体验一下,怎么做呢,一张一张下好麻烦, ...
- ServiceStack 概念参考文摘
摘自:http://www.cnblogs.com/woxpp/p/5010881.html ServiceStack 用于服务开发,可以为各种形式的网站.软件.APP等提供数据服务,可以提供REST ...
- 【CSS3】 线性渐变
参考地址:http://www.w3cplus.com/css3/new-css3-linear-gradient.html background-image: linear-gradient(to ...
- Android Bundle
#Bundle类介绍 Bundle主要用于传递数据:它保存的数据,是以key-value(键值对)的形式存在的. 我们经常使用Bundle在Activity之间传递数据,传递的数据可以是boolean ...
- Android布局方式_RelativeLayout
RelativeLayout(相对布局)允许子元素指定它们相对于其他元素或父元素的位置(通过ID指定),因此用户可以右对齐,或上下对齐,或置于屏幕中央的形式来排列两个元素. RelativeLayou ...
- SpringMVC学习--文件上传
简介 文件上传是web开发中常见的需求之一,springMVC将文件上传进行了集成,可以方便快捷的进行开发. springmvc中对多部件类型解析 在 页面form中提交enctype="m ...
- Java--剑指offer(7)
31.求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.AC ...
- 控件(按钮类): ButtonBase, Button, HyperlinkButton, RepeatButton, ToggleButton, AppBarButton, AppBarToggleButton
介绍背水一战 Windows 10 之 控件(按钮类) ButtonBase Button HyperlinkButton RepeatButton ToggleButton AppBarButton ...