良心的题解↓

http://z55250825.blog.163.com/blog/static/150230809201412793151890/

tarjan的时候如果是树边则做树形DP(遇到环就无视),最后在tarjan回溯前扫一遍当前点为“最高点”的环,进行环上DP,这个环上DP是$O(n^2)$的,但如果我们用单调队列优化则是$O(n)$的

总复杂度$O(n)$真是无限仰膜OTZ

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 500003;
void read(int &k) {
k = 0; int fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = (k << 1) + (k << 3) + c - '0';
k = k * fh;
} struct node {int nxt, to;} E[N << 1];
int ans = 0, point[N], n, m, cnt = 0, l, r;
int deep[N], F[N], fa[N], DFN[N], low[N], Q[N << 1], tb[N << 1]; void ins(int x, int y) {E[++cnt] = (node) {point[x], y}; point[x] = cnt;} void __(int rt, int x) {
int tot = deep[x] - deep[rt] + 1, num = tot << 1, top = tot >> 1;
for(int tmp = x; tmp != rt; tmp = fa[tmp]) tb[tot--] = F[tmp];
tb[1] = F[rt];
tot = deep[x] - deep[rt] + 1;
for(int i = 1; i <= tot; ++i) tb[tot + i] = tb[i];
l = r = 1; Q[1] = 1;
for(int i = 2; i <= num; ++i) {
while (l <= r && i - Q[l] > top) ++l;
ans = max(ans, tb[i] + i + tb[Q[l]] - Q[l]);
while (l <= r && tb[Q[r]] - Q[r] <= tb[i] - i) --r;
Q[++r] = i;
}
for(int i = 2; i <= tot; ++i)
F[rt] = max(F[rt], tb[i] + min(i - 1, tot - i + 1));
} void _(int x) {
DFN[x] = low[x] = ++cnt;
for(int tmp = point[x]; tmp; tmp = E[tmp].nxt) {
int v = E[tmp].to;
if (v == fa[x]) continue;
if (!DFN[v]) {
fa[v] = x; deep[v] = deep[x] + 1;
_(v); low[x] = min(low[x], low[v]);
} else
low[x] = min(low[x], DFN[v]);
if (DFN[x] < low[v]) {
ans = max(ans, F[x] + F[v] + 1);
F[x] = max(F[x], F[v] + 1);
}
}
for(int tmp = point[x]; tmp; tmp = E[tmp].nxt) {
int v = E[tmp].to;
if (x == fa[v] || DFN[x] > DFN[v]) continue;
__(x, v);
}
} int main() {
read(n); read(m); int u, v, k;
for(int i = 1; i <= m; ++i) {
read(k); read(u);
for(--k; k; --k) {read(v); ins(u, v); ins(v, u); u = v;}
} cnt = 0;
_(1);
printf("%d\n", ans);
return 0;
}

仙人掌虽然偏,但是不知道也不可以,这个代码是我磕了一晚上题解的成果QAQ

【BZOJ 1023】【SHOI 2008】cactus仙人掌图的更多相关文章

  1. 【BZOJ 1023】[SHOI2008]cactus仙人掌图

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1023 [题意] [题解] 如果不考虑有环的情况; 那么有一个经典的求树的直径的方法; ...

  2. 【BZOJ】【1023】【SHOI2008】cactus仙人掌图

    DP+单调队列/仙人掌 题解:http://hzwer.com/4645.html->http://z55250825.blog.163.com/blog/static/150230809201 ...

  3. bzoj 1023: [SHOI2008]cactus仙人掌图 tarjan缩环&&环上单调队列

    1023: [SHOI2008]cactus仙人掌图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1141  Solved: 435[Submit][ ...

  4. bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...

  5. SHOI2008 cactus仙人掌图 和 UOJ87 mx的仙人掌

    cactus仙人掌图 题目描述 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一 ...

  6. [BZOJ]1023 cactus仙人掌图(SHOI2008)

    NOIP后的第一次更新嗯. Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在 ...

  7. 1023: [SHOI2008]cactus仙人掌图 - BZOJ

    Description如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路 ...

  8. 【刷题】BZOJ 1023 [SHOI2008]cactus仙人掌图

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...

  9. 【BZOJ】1023: [SHOI2008]cactus仙人掌图 静态仙人掌(DFS树)

    [题意]给定仙人掌图(每条边至多在一个简单环上),求直径(最长的点对最短路径).n<=50000,m<=10^7. [算法]DFS树处理仙人掌 [题解]参考:仙人掌相关问题的处理方法(未完 ...

  10. 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)

    这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...

随机推荐

  1. POJ 3384 Feng Shui --直线切平面

    题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...

  2. UESTC 33 Area --凸包面积

    题意: 求一条直线分凸包两边的面积. 解法: 因为题意会说一定穿过,那么不会有直线与某条边重合的情况.我们只要找到一个直线分成的凸包即可,另一个的面积等于总面积减去那个的面积. 怎么得到分成的一个凸包 ...

  3. HDU2191悼念512汶川大地震遇难同胞——珍惜现在,感恩生活[多重背包]

    悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  4. Unity Camera的两种模式

    http://www.cnblogs.com/zhaoqingqing/p/3302484.html

  5. Zygote进程【1】——Zygote的诞生

    在Android中存在着C和Java两个完全不同的世界,前者直接建立在Linux的基础上,后者直接建立在JVM的基础上.zygote的中文名字为"受精卵",这个名字很好的诠释了zy ...

  6. 手势-webview与scrollView重复手势处理

    // called when the recognition of one of gestureRecognizer or otherGestureRecognizer would be blocke ...

  7. HTML DOM 事件

    HTML DOM 事件 HTML DOM 事件 HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序. 事件通常与函数结合使用,函数不会在事件发生前被执行! (如用户 ...

  8. Mac下搭建php开发环境教程

    方案一:原生安装 这篇文章主要介绍了Mac下搭建php开发环境教程,Mac OS X 内置了Apache 和 PHP,这样使用起来非常方便.本文以Mac OS X 10.6.3为例,需要的朋友可以参考 ...

  9. Centos下Tomcat 安装Apache Portable Runtime

    APR(Apache Portable Runtime)是一个高可移植库,它是Apache HTTP Server 2.x的核心. APR有很多用途,包括访问高级IO功能(例如sendfile,epo ...

  10. GNU Trove trove4j

    GNU Trove (http://trove4j.sourceforge.net/) 是一个Java 集合类库.在某些场景下,Trove集合类库提供了更好的性能,而且内存使用更少.以下是Trove中 ...