函数\(f\)的Hessian矩阵由是由它的二阶偏导数组成的方阵

\[
H = \begin{bmatrix}
\dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex]
\dfrac{\partial^2 f}{\partial x_2\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_2^2} & \cdots & \dfrac{\partial^2 f}{\partial x_2\,\partial x_n} \\[2.2ex]
\vdots & \vdots & \ddots & \vdots \\[2.2ex]
\dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}.
\]

\[
h_{ij} = \frac {\partial^2f}{\partial x_i \partial x_j}
\]

当\(f\)为连续函数时, 高阶偏导数的值与偏导顺序无关. 所以Hessian Matrix是对称阵.

Hessian Matrix的更多相关文章

  1. 目标检测之基础hessian matrix ---海森矩阵

    就是海赛(海色)矩阵,在网上搜就有. 在数学中,海色矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵, Hessian矩阵是多维变量函数的二阶偏导数矩阵,H(i,j)=d^2(f)/(d(x ...

  2. [转帖]海森矩阵(Hessian matrix)

    http://hi.baidu.com/imheaventian/item/c8591b19907bd816e2f98612

  3. Hessian Matrix 多元函数的极值 半正定矩阵 正定矩阵

    https://baike.baidu.com/item/黑塞矩阵/2248782?fr=aladdin 海塞矩阵 Hasse https://baike.baidu.com/item/半正定矩阵

  4. Hessian矩阵

    http://baike.baidu.com/link?url=o1ts6Eirjn5mHQCZUHGykiI8tDIdtHHOe6IDXagtcvF9ncOfdDOzT8tmFj41_DEsiUCr ...

  5. Hessian矩阵与多元函数极值

    Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...

  6. 三维重建面试4:Jacobian矩阵和Hessian矩阵

    在使用BA平差之前,对每一个观测方程,得到一个代价函数.对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法.相当于同时对相机位姿和路标进行调整,这就是所谓的BA ...

  7. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  8. 梯度、Hessian矩阵、平面方程的法线以及函数导数的含义

    本文转载自: Xianling Mao的专栏 =========================================================================== 想 ...

  9. 梯度vs Jacobian矩阵vs Hessian矩阵

    梯度向量 定义: 目标函数f为单变量,是关于自变量向量x=(x1,x2,-,xn)T的函数, 单变量函数f对向量x求梯度,结果为一个与向量x同维度的向量,称之为梯度向量: 1. Jacobian 在向 ...

随机推荐

  1. python 使用pip安装第三方模块

    part 1:使用方法: 1.pip install somePackage picture 1 2.pip show somePackage 例如:pip show pip 弹出关于该模块的信息 p ...

  2. java-vector hashtable过时?

    vector hashtable过时? 在用JAVA集合时,IDE提示 vector 以及hashtable被arraylist ,hashmap替代,而前者又是线程同步的,不知道为什么?是效率差了的 ...

  3. SQL变量、运算符、分支、循环语句

    变量: SQL语言也跟其他编程语言一样,拥有变量.分支.循环等控制语句. 在SQL语言里面把变量分为局部变量和全局变量,全局变量又称系统变量. 局部变量: 使用declare关键字给变量声明,语法非常 ...

  4. lca入门———树上倍增法(博文内含例题)

    倍增求LCA: father[i][j]表示节点i往上跳2^j次后的节点 可以转移为 father[i][j]=father[father[i][j-1]][j-1] 整体思路: 先比较两个点的深度, ...

  5. 多线程进行http请求

    昨天需要一个线下脚本进行单播推送,大约有1kw个用户,考虑到推送速度就临时搞了个请求线上的一个脚本 /** * 临时支持invoke单播推送 */ #include <stdio.h> # ...

  6. DEDECMS之七 如何实现文章推荐排行榜

    经常可以看到各种排行榜,这些文章列表的标题之前加了序号,前三条还有显眼样式 1.实现效果 2.实现方法 <ul class="hotPh1"> {dede:arclis ...

  7. swift 集合类型(二)

    说到swift的集合类型,就不得不谈到Dictionary.包含一个键值对组合的集合. var air = ["name":"warner","tit ...

  8. mysql ERROR 1045 (28000): Access denied for user解决方法

    一 这种情况下是 root@% update mysql.user set host='%' where user='root' and host='localhost'; flush privile ...

  9. Theano2.1.6-基础知识之在thenao中的求导

    来自:http://deeplearning.net/software/theano/tutorial/gradients.html Derivatives in Theano 一.计算梯度 现在,让 ...

  10. CUDA2.1-原理之索引与warp

    本小节来自<大规模并行处理器编程实战>第四节,该书是很好的从内部原理结构上来讲述了CUDA的,对于理解CUDA很有帮助,借以博客的形式去繁取间,肯定会加入自己个人理解,所以有错误之处还望指 ...