1670: [Usaco2006 Oct]Building the Moat护城河的挖掘

Time Limit: 3 Sec  Memory Limit: 64 MB
Submit: 464  Solved: 331
[Submit][Status][Discuss]

Description

为了防止口渴的食蚁兽进入他的农场,Farmer John决定在他的农场周围挖一条护城河。农场里一共有N(8<=N<=5,000)股泉水,并且,护城河总是笔直地连接在河道上的相邻的两股泉水。护城河必须能保护所有的泉水,也就是说,能包围所有的泉水。泉水一定在护城河的内部,或者恰好在河道上。当然,护城河构成一个封闭的环。 挖护城河是一项昂贵的工程,于是,节约的FJ希望护城河的总长度尽量小。请你写个程序计算一下,在满足需求的条件下,护城河的总长最小是多少。 所有泉水的坐标都在范围为(1..10,000,000,1..10,000,000)的整点上,一股泉水对应着一个唯一确定的坐标。并且,任意三股泉水都不在一条直线上。 以下是一幅包含20股泉水的地图,泉水用"*"表示


图中的直线,为护城河的最优挖掘方案,即能围住所有泉水的最短路线。 路线从左上角起,经过泉水的坐标依次是:(18,0),(6,-6),(0,-5),(-3,-3),(-17,0),(-7,7),(0,4),(3,3)。绕行一周的路径总长为70.8700576850888(...)。答案只需要保留两位小数,于是输出是70.87。

Input

* 第1行: 一个整数,N * 第2..N+1行: 每行包含2个用空格隔开的整数,x[i]和y[i],即第i股泉水的位 置坐标

Output

* 第1行: 输出一个数字,表示满足条件的护城河的最短长度。保留两位小数

Sample Input

20
2 10
3 7
22 15
12 11
20 3
28 9
1 12
9 3
14 14
25 6
8 1
25 1
28 4
24 12
4 15
13 5
26 5
21 11
24 4
1 8

Sample Output

70.87

HINT

 

Source

凸包 卡壳

Solution

Graham扫描法求凸包,模板题

(1)找出点集p[]中最左下的点p1,把p1同点集中其他各点用线段连接,并计算这些线段与水平线的夹角,然后按夹角从小到大和按到p1的距离从近到远排序(夹角范围为 [0, 180)度,而且可以删除相同夹角且距离p1较近的点,保留最远点,这样可减少计算量。因为直线上的非端点不是凸包的极点,即如果p1,p2,p3在一条直线上,则只取凸点p1,p3。p2不在端点,故可以去掉),得到新的节点序列p1,p2,...pn.依次连接这些点,得到一个多边形(已经逆时针,有所进展,但还需去掉不在凸包上的点)。此时p1是凸包的边界起点,p2和pn也是最终凸包的顶点,p[n+1]=p1(看成循环的)

(2)删除p3,p4,...p[n-1]中不在凸包上的点:

先把p1,p2,p3入栈S中,再依次循环(i = 3 -> n-1),若栈顶的两个点和当前的点p[i]这三点连线的方向向顺时针方向偏转,表明是凹的,应删除,则栈顶元素出栈(要循环判断,即可能前面的仍是凹的,还需再出栈,举例如下图),直到向逆时针方向偏转或者栈内只有2个元素了(p1p2),就把当前点p[i]入栈。

最后栈中的元素就是最终凸包上的点。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
using namespace std;
struct Vector
{
double x,y;
Vector (double X=,double Y=) {x=X; y=Y;}
};
typedef Vector Point;
#define MAXN 5010
Point P[MAXN],ch[MAXN];
int n;
#define eps 1e-8
int dcmp(double x) {if (fabs(x)<eps) return ; return x<? -:;}
Vector operator + (Vector A,Vector B) {return ((Vector){A.x+B.x,A.y+B.y});}
Vector operator - (Vector A,Vector B) {return ((Vector){A.x-B.x,A.y-B.y});}
Vector operator * (Vector A,double p) {return ((Vector){A.x*p,A.y*p});}
Vector operator / (Vector A,double p) {return ((Vector){A.x/p,A.y/p});}
double Dot(Vector A,Vector B) {return A.x*B.x+A.y*B.y;}
double Cross(Vector A,Vector B) {return A.x*B.y-A.y*B.x;}
double dis(Point A,Point B) {return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));}
bool operator < (const Vector& a,const Vector& b) {return a.x<b.x||(a.x==b.x&&a.y<b.y);}
int Graham_ConvexHull(Point *p,int num,Point *ch)
{
sort(p,p+n);
int m=;
for (int i=; i<num; i++)
{
while (m> && dcmp(Cross(ch[m-]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[m++]=p[i];
}
int k=m;
for (int i=n-; i>=; i--)
{
while (m>k && dcmp(Cross(ch[m-]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[m++]=p[i];
}
if (num>) m--;
return m;
}
double ans=;
int main()
{
scanf("%d",&n);
for (int i=; i<=n-; i++)
scanf("%lf%lf",&P[i].x,&P[i].y);
int m=Graham_ConvexHull(P,n,ch);
ch[m+]=ch[];
for (int i=; i<=m; i++) ans+=dis(ch[i],ch[i+]);
printf("%.2lf\n",ans);
return ;
}

模板题差点没1A...吓死我了

【BZOJ-1670】Building the Moat护城河的挖掘 Graham扫描法 + 凸包的更多相关文章

  1. bzoj 1670 Building the Moat护城河的挖掘 —— 凸包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1670 单调栈维护凸包即可,用叉积判断: 维护上凸壳,然后把所有点的纵坐标翻转再求上凸壳即可, ...

  2. BZOJ_1670_[Usaco2006 Oct]Building the Moat护城河的挖掘_求凸包

    BZOJ_1670_[Usaco2006 Oct]Building the Moat护城河的挖掘_求凸包 Description 为了防止口渴的食蚁兽进入他的农场,Farmer John决定在他的农场 ...

  3. bzoj 1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 -- 凸包

    1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 Time Limit: 3 Sec  Memory Limit: 64 MB Description 为了防止 ...

  4. bzoj1670【Usaco2006 Oct】Building the Moat 护城河的挖掘

    1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 387  Sol ...

  5. 【BZOJ】1670: [Usaco2006 Oct]Building the Moat护城河的挖掘(凸包)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1670 裸打了凸包.. #include <cstdio> #include <cs ...

  6. 牛客假日团队赛5J 护城河 bzoj 1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 (凸包的周长)

    链接:https://ac.nowcoder.com/acm/contest/984/J 来源:牛客网 护城河 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...

  7. BZOJ 1670: [Usaco2006 Oct]Building the Moat护城河的挖掘

    Description 求凸包周长. Sol 凸包+计算几何. 这好像叫什么 Graham Scan 算法... 这个可以求凸包的周长,直径,面积. 选择一个基点,然后按极角排序,最后用一个栈一直维护 ...

  8. bzoj 1670 [Usaco2006 Oct]Building the Moat护城河的挖掘——凸包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1670 用叉积判断.注意两端的平行于 y 轴的. #include<cstdio> ...

  9. bzoj 1670: [Usaco2006 Oct]Building the Moat护城河的挖掘【凸包】

    凸包模板 #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> ...

随机推荐

  1. 十大经典排序算法总结——JavaScrip版

    首先,对于评述算法优劣术语的说明: 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面:即排序后2个相等键值的顺序和排序之前它们的顺序相同 不稳定:如果a原本在b的前面,而a=b,排序之后a ...

  2. 【MySql】存储过程添加事务

    存储过程使用SQLException捕获SQL错误,然后处理: 我们可以在MySQL存储过程中捕获SQL错误,然后通过事务判断,回滚(ROLLBACK)还是提交(COMMIT). CREATE PRO ...

  3. C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 用户权限树的实现 -- 权限递归树

    业务系统里经常会需要计算类似的树形权限树的业务需求 1:往往会有一些需求,a 对 b 有权限, b对c 有权限, 等等. 2:还需要很直观的看到,整个权限的树形关系,一目了然的那种. 3:程序调用简单 ...

  4. Kafka及 .NET Core 客户端

    消息队列 Kafka 的基本知识及 .NET Core 客户端 消息队列 Kafka 的基本知识及 .NET Core 客户端   前言 最新项目中要用到消息队列来做消息的传输,之所以选着 Kafka ...

  5. Display HTML in WPF and CefSharp

    https://www.codeproject.com/articles/881315/display-html-in-wpf-and-cefsharp-tutorial-part Download ...

  6. Android -- Adapter

    体系 public interface Adapter----0层(表示继承体系中的层次)  public interface ExpandableListAdapter---(无所谓层次因为没有其他 ...

  7. swift——启动页国际化:一步一步动态加载启动页图片,启动的时候加载文字

    由于公司的需求,要求做一个国际化的启动页,因为app我也弄国际化了,就剩下启动页国际化未完成,百度了呵谷歌了好多答案都不尽如人意,最后也是看见同事完成,我也问了具体的做法,决定分享给需要的人,免得和我 ...

  8. 几种任务调度的 Java 实现方法与比较

    综观目前的 Web 应用,多数应用都具备任务调度的功能.本文由浅入深介绍了几种任务调度的 Java 实现方法,包括 Timer,Scheduler, Quartz 以及 JCron Tab,并对其优缺 ...

  9. jQuery 之 Callback 实现

    在 js 开发中,由于没有多线程,经常会遇到回调这个概念,比如说,在 ready 函数中注册回调函数,注册元素的事件处理等等.在比较复杂的场景下,当一个事件发生的时候,可能需要同时执行多个回调方法,可 ...

  10. JavaEE PO VO BO DTO POJO DAO 整理总结

    佩服能将复杂难懂的技术,抽象成简单易懂事物的人. 厌恶将简单易懂的技术,添加一堆专业术语将别人弄的头晕目眩的人. PO VO BO DTO POJO DAO 总体一览: 1.DAO[data acce ...