bzoj4305: 数列的GCD
要求k个与原序列中的数不同,就是要求(n-k)个相同,令K=n-k
然后cnt[i]表示序列a中i的倍数的个数
f[i]表示gcd为i的倍数的方案数
f[i]=C(cnt[i],K)*(m/i-1)^(cnt[i]-K)*(m/i)^(n-cnt[i])
那么ans[i]=f[i]-sigma(ans[j]) (j%i==0)
cnt和组合数都可以在nlogn内预处理
所以复杂度nlogn
详见代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define ll long long
#define N 300005
#define P 1000000007 using namespace std;
inline int read(){
int ret=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while ('0'<=ch&&ch<='9'){
ret=ret*10-48+ch;
ch=getchar();
}
return ret;
} int pow2(int x,int y){
int ret=1;
while (y){
if (y&1) ret=(ll)ret*x%P;
y=y>>1;
x=(ll)x*x%P;
}
return ret;
} int n,m,K;
int a[N];
int cc[N];
int cnt[N];
void precompute(){
memset(cnt,0,sizeof(cnt));
for (int i=1;i<=n;++i) ++cnt[a[i]];
for (int i=1;i<=m;++i)
for (int j=2;i*j<=m;++j) cnt[i]+=cnt[i*j];
cc[K]=1;
for (int i=K+1;i<=n;++i) cc[i]=(ll)cc[i-1]*pow2(i-K,P-2)%P*i%P;
} int ans[N]; int main(){
n=read();m=read();K=n-read();
for (int i=1;i<=n;++i) a[i]=read();
precompute();
for (int i=m;i;--i)if (cnt[i]>=K){
ans[i]=(ll)cc[cnt[i]]*pow2(m/i-1,cnt[i]-K)%P*pow2(m/i,n-cnt[i])%P;
for (int j=2;i*j<=m;++j) (ans[i]-=ans[i*j]-P)%=P;
}
else ans[i]=0;
for (int i=1;i<m;++i) printf("%d ",ans[i]);
printf("%d\n",ans[m]);
return 0;
}
bzoj4305: 数列的GCD的更多相关文章
- [BZOJ4305]数列的GCD:莫比乌斯反演+组合数学
分析 一开始想的是对恰好\(k\)个位置容斥,结果发现对\(\gcd\)有些无从下手,想了想发现自己又sb了. 考虑对\(\gcd\)进行容斥处理,弱化条件,现在我们要求的是使\(\gcd\)是\(d ...
- BZOJ 4305: 数列的GCD( 数论 )
对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...
- 【BZOJ 4305】 4305: 数列的GCD (数论)
4305: 数列的GCD Description 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不 ...
- bzoj 4305 数列的GCD
LINK:数列的GCD 题意: 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], ...
- 【bzoj4305】数列的GCD 组合数学+容斥原理
题目描述 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., ...
- hdu6363 bookshelf 容斥+数列+数论gcd定理(也可以Möbius)
#define _CRT_SECURE_NO_WARNINGS #include<cmath> #include<iostream> #include<stdio.h&g ...
- 2016 大连网赛---Different GCD Subarray Query(GCD离散+树状数组)
题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5869 Problem Description This is a simple probl ...
- CF798 C. Mike and gcd problem
/* CF798 C. Mike and gcd problem http://codeforces.com/contest/798/problem/C 数论 贪心 题意:如果一个数列的gcd值大于1 ...
- codeforces 798c Mike And Gcd Problem
题意: 给出一个数列,现在有一种操作,可以任何一个a[i],用a[i] – a[i+1]和a[i]+a[i+1]替代a[i]和a[i+1]. 问现在需要最少多少次操作,使得整个数列的gcd大于1. 思 ...
随机推荐
- onSaveInstanceState() 和 onRestoreInstanceState()
本文介绍Android中关于Activity的两个神秘方法:onSaveInstanceState() 和 onRestoreInstanceState(),并且在介绍这两个方法之后,再分别来实现使用 ...
- html-webpack-plugin插件的详细介绍和使用
var webpack = require('webpack'); var HtmlWebpackPlugin = require('html-webpack-plugin'); module.exp ...
- JQuery学习
首先要明白一点,JQuery是一个JS的封装库,目的是为了关注点分离,让前端更加侧重于界面显示,而不是各个浏览器不同的差异性,下面是JQuery的一些常用的基本用法 一,JQuery语法 window ...
- AngularJS+Node的RESTful之基本实现
欢迎大家指导与讨论 : ) 一.前言 本文主要讲述RESTful在node端与AngularJS两端配合的基本实现方法,为了尽量做到大家易看易懂,因此文章也没有深入探讨(其实是小鹏我只学到目前这些 - ...
- 返回标量CLR自定义函数
昨天有学习了返回表自定义函数<CLR Table-Valued函数>http://www.cnblogs.com/insus/p/4378354.html.今天学习另一个,实现返回标量(S ...
- 转:openwrt中luci学习笔记
原文地址:openwrt中luci学习笔记 最近在学习OpenWrt,需要在OpenWrt的WEB界面增加内容,本文将讲述修改OpenWrt的过程和其中遇到的问题. 一.WEB界面开发 ...
- matlab jet color mapping C / C++ / VC 实现
在matlab中调用imagesc()将一幅灰阶图像以彩色显示时,默认使用的color mapping是Jet,其color bar 为: Jet的color mapping图为: Color map ...
- SQLServer(MSSQL)、MySQL、SQLite、Access相互迁移转换工具 DB2DB v1.4
最近公司有一个项目,需要把原来的系统从 MSSQL 升迁到阿里云RDS(MySQL)上面.为便于测试,所以需要把原来系统的所有数据表以及测试数据转换到 MySQL 上面.在百度上找了很多方法,有通过微 ...
- UWP 快速的Master/Detail实现
最近在写快报(还没有写完)的过程中,一开始就遇到了这个Master/Detail如何实现的问题. 微软给出Demo并不符合要求,搜索后找到了今日头条开发者写的一篇 :实现Master/Detail布局 ...
- gulp插件gulp-usemin简单使用
关于什么是gulp,它和grunt有什么区别等问题,这里不做任何介绍.本文主要介绍如何使用gulp-usemin这款插件,同时也会简单介绍本文中用到的一些插件. 什么是gulp-usemin 用来将H ...