相信大家对欧几里得算法,即辗转相除法不陌生吧。

代码如下:

int gcd(int a, int b){
return !b ? gcd(b, a % b) : a;
}

而扩展欧几里得算法,顾名思义就是对欧几里得算法的扩展。

切入正题:

首先我们来看一个问题:

求整数x, y使得ax + by = 1, 如果gcd(a, b) != 1, 我们很容易发现原方程是无解的。则方程ax + by = 1有正整数对解(x, y)的必要条件是gcd(a, b) = 1,即a, b 互质。

此时正整数对解(x, y)可以通过扩展欧几里得算法求得。

对于方程ax + by = gcd(a, b);我们设解为x1,  y1

我们令a = b, b = a % b;

得到方程bx + a % by = gcd(b, a % b);

由欧几里得算法可以得到gcd(a, b) = gcd(b, a % b);

代入可得:bx + a % b y = gcd(a, b)

设此方程解为x2, y2

在计算机中我们知道: a % b = a - (a / b) * b;

代入方程化解得:

ay2 + b(x2 - (a / b) y2) = gcd(a, b);

与ax1 + by= gcd(a, b) 联立,我们很容易得:

x1 = y2, y1 = x- (a / b)y2;

然后我们就这样可以解出来了。

等等我们似乎忘记一个东西了吧?对就是递归的终点。也就是最后方程的解x和y。

对于方程ay2 + b(x2 - (a / b) y2) = gcd(a, b);

当b = 0时,发现a * 1 + b * 0 = gcd(a, b)

则有x = 1, y = 0。

由此我们把ax + by = 1的其中一组解解出来了, 仅仅是其中一组解。

对于已经得到的解x1, y1;我们便可以求出通解。

我们设x = x1 + kt;t为整数

带入方程解得y = y1 - a * k / b * t;

而我们要保证y也为整数的话必须保证a * k /b也为整数,我们不妨令k = b/gcd(a, b);

所以通解为:

x = x1 + b / gcd(a, b) * t;

y = y1 -  a / gcd(a, b) * t;

其中t为整数。

附上伪代码:

int a, b, x, y;

int extgcd(int a, int b,int &x, int &y){
int d = a;
if(b != 0){
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else x = 1, y = 0;
return d;
}//d = gcd(a, b);

扩展欧几里得算法还可以用来解如下方程:

ax = mt + b,ax - mt = b

这种形式不就是前面的形式吗?

扩展欧几里得算法(extgcd)的更多相关文章

  1. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

  2. 欧几里得算法与扩展欧几里得算法_C++

    先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...

  3. vijos1009:扩展欧几里得算法

    1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...

  4. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  5. 浅谈扩展欧几里得算法(exgcd)

    在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...

  6. (light oj 1306) Solutions to an Equation 扩展欧几里得算法

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...

  7. 『扩展欧几里得算法 Extended Euclid』

    Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...

  8. 题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)

    题面 题目描述 给出一个有理数 c=\frac{a}{b}  ​ ,求  c mod19260817  的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整 ...

  9. 【learning】 扩展欧几里得算法(扩展gcd)和乘法逆元

    有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^ ...

随机推荐

  1. (视频) 《快速创建网站》 2.3 WordPress初始化和功能简介

    本文是<快速创建网站>系列的第4篇,如果你还没有看过之前的内容,建议你点击以下目录中的章节先阅读其他内容再回到本文. 访问本系列目录,请点击:http://devopshub.cn/tag ...

  2. 【JSP】JSP基础学习记录(四)—— Servlet

    序: 众所周知JSP的基础也就是Servlet,如果单纯用Servlet类来响应用户的HTTP请求可以吗?答案是肯定的.JSP中的9个内置对象只是自动帮我们初始化的,没有他们一样可以实现web.只是工 ...

  3. SQLHelp帮助类

    public readonly static string connStr = ConfigurationManager.ConnectionStrings["conn"].Con ...

  4. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作

    http://www.cnblogs.com/wgp13x/p/4934521.html 内容一样,样式好的版本. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据 ...

  5. Java魔法堂:找外援的利器——Runtime.exec详解

    一.前言 Java虽然五脏俱全但总有软肋,譬如获取CPU等硬件信息,当然我们可以通过JNI调用C/C++来获取,但对于对C/C++和Windows API不熟的码农是一系列复杂的学习和踩坑过程.那能不 ...

  6. get_free_page

    /**  0.11用了 unsigned char */static unsigned short mem_map [ PAGING_PAGES ] = {0,}; /* * Get physical ...

  7. 手动添加jar包到maven

    废话不说,先上图,后说明: 1.登录系统 2.跟着箭头和方框走,一直到 Select Artifact(s) to Upload... 按钮 3.点击Select Artifact(s) to Upl ...

  8. sed grep find命令

    一.sed [-nerf][n1,n2] action -n 安静模式,只有经过sed处理过的行才显示出来,其他不显示. -r 表示sed支持扩展的正则表达式 -e 表示直接在命令行模式上进行sed操 ...

  9. jquery图片时钟

    一.生成数字时钟 <script src="http://code.jquery.com/jquery-latest.js"></script> <s ...

  10. Interceptor

    拦截器是可以控制权限,当用户需要查看查看某些功能的时候,需要判断是不是登录了,如果没有登录的,就可拦截的过程.. 首先,我们都知道struts.xml 中有action 节点, 这个节点表示你想要访问 ...