Lecture3   Linear Algebra Review 线性代数回顾

3.1 矩阵和向量
3.2 加法和标量乘法
3.3 矩阵向量乘法
3.4 矩阵乘法
3.5 矩阵乘法的性质
3.6 逆、转置

3.1 矩阵和向量  

  参考视频: 3 - 1 - Matrices and Vectors (9 min).mkv

3.2 加法和标量乘法

  参考视频: 3 - 2 - Addition and Scalar Multiplication (7 min).mkv

3.3 矩阵向量乘法

  参考视频: 3 - 3 - Matrix Vector Multiplication (14 min).mkv

3.4 矩阵乘法

  参考视频: 3 - 4 - Matrix Matrix Multiplication (11 min).mkv

3.5 矩阵乘法的性质

  参考视频: 3 - 5 - Matrix Multiplication Properties (9 min).mkv

  矩阵的乘法有以下规律:

1、不符合交换律 commutative A × B ≠ B× A  【但是对于单位矩阵,有AI = IA = A】

   2、符合组合律 associative    A ×(B× C) =(A × B)× C

3.6 逆、转置

3.6.1 矩阵的逆 Inverse Matrix

  矩阵的逆 A-1  Inverse Matrix。如矩阵 A 是一个 m× m 矩阵(方阵), 如果有逆矩阵A-1 ,则:

  I 称为 单位矩阵 Identity Matrix

  没有逆矩阵的矩阵称为 奇异矩阵singular matrix 或者 退化矩阵 degenerate matrix。

  规则:

  1、只有方阵有逆矩阵。

  2、零矩阵没有逆矩阵 (还有其他一些矩阵没有逆矩阵,可以想成是一些特别接近零矩阵的矩阵)

3.6.2 使用 Octave 计算矩阵的逆

计算矩阵的逆通常使用MATLAB 或者 Octave,打开Octave的bash界面。

  

  以下是在Octave里计算逆矩阵的过程:

 Please contribute if you find this software useful.
For more information, visit https://www.octave.org/get-involved.html Read https://www.octave.org/bugs.html to learn how to submit bug reports.
For information about changes from previous versions, type 'news'. octave:> A = [ ; ]          //
输入一个矩阵 A
A = octave:> pinv(A)               //
计算其逆矩阵 InverseOfA
ans = 0.400000 -0.100000
-0.050000 0.075000 octave:> inverseOfA = pinv(A)
inverseOfA = 0.400000 -0.100000
-0.050000 0.075000 octave:> A * pinv(A)          
ans = 1.0000e+00 5.5511e-17         //
由于计算精度的问题, 四舍五入导致次对角线元素不是0,而是10的-17方、10的-16方,可以近似于0
-2.2204e-16 1.0000e+00 octave:> A * inverseOfA          //
计算 A * InverseOfA
ans = 1.0000e+00 5.5511e-17
-2.2204e-16 1.0000e+00 octave:> inverseOfA * A          
// 计算 InverseOfA * A
ans = 1.00000 -0.00000
0.00000 1.00000 octave:>

3.6.3 矩阵的转置

  矩阵转置 Transpose Matrix ,符号为AT

  定义:设 A 为 m× n 阶矩阵(即 m 行 n 列),第 i 行 j 列的元素是 a(i,j),即:A = a(i,j)。定义 A 的转置为这样一个 n× m 阶矩阵 B,满足 B=a(j,i),即 b (i,j)=a (j,i)(B 的第 i 行第 j 列元素是 A 的第 j 行第 i 列元素),记 AT=B。 (有些书记为 A'=B)
直观来看,将 A 的所有元素绕着一条从第 1 行第 1 列元素出发的右下方 45 度的射线作镜面反转,即得到 A 的转置。

矩阵的转置基本性质:

(A ± B) T = AT ± BT
(A × B) T= BT × AT
(AT) T = A
(KA) T = KAT

  MATLAB 和 Octave 中矩阵转置:直接打一撇, B = A'。

 octave:> B = A'
B =

术语

up to the numerical precision 由于计算精度的问题

essentially 根本上

ten to the minus seventeen  10的-17次方

round off 四舍五入

optimal matrices 最优矩阵

【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 3_Linear Algebra Review的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统

    Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...

  3. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维

    Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是 ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类

    Lecture 13 聚类 Clustering 13.1 无监督学习简介  Unsupervised Learning Introduction 现在开始学习第一个无监督学习算法:聚类.我们的数据没 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机

    Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念

    目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning  无 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 18—Photo OCR 应用实例:图片文字识别

    Lecture 18—Photo OCR 应用实例:图片文字识别 18.1 问题描述和流程图 Problem Description and Pipeline 图像文字识别需要如下步骤: 1.文字侦测 ...

随机推荐

  1. Node.js 问题集合

    使用node合并多个接口, 最后获取数据慢的问题                暂时没解决方法 pm2 访问 ip 记录到日志                                      ...

  2. java事务(二)——本地事务

    本地事务 事务类型 事务可以分为本地事务和分布式事务两种类型.这两种事务类型是根据访问并更新的数据资源的多少来进行区分的.本地事务是在单个数据源上进行数据的访问和更新,而分布式事务是跨越多个数据源来进 ...

  3. Spring-Kafka 2.0.0发送API翻译

    Kafka Template–2.2.0 api KafkaTemplate KafkaTemplate这个类包装了个生产者,来提供方便的发送数据到kafka的topic里面. 同步和异步的方法都有, ...

  4. Arcgis for Js实现graphiclayer的空间查询(续)

    上文中,实现了简单的针对graphiclayer的空间查询工作,在本节,将更加详细的介绍针对graphiclayer的空间查询.首先,空间查询的方式:提供多种类型的空间查询,包括点周边.线周边.面内等 ...

  5. 用java网络编程中的TCP方式上传文本文件及出现的小问题

    自己今天刚学java网络编程中的TCP传输,要用TCP传输文件时,自己也是遇到了一些问题,抽空把它整理了一下,供自己以后参考使用. 首先在这个程序中,我用一个客户端,一个服务端,从客户端上传一个文本文 ...

  6. 【剑指offer】数组中的逆序对,C++实现

    原创博文,转载请注明出处!本题牛客网地址 博客文章索引地址 博客文章中代码的github地址 1.题目 2.思路 3.代码 class Solution { public: int InversePa ...

  7. 【面试季之三】IE6兼容问题

    最近面试真的碰到很多基础的问题,平时在工作的时候往往可以直观的看到页面的问题,然后进行代码调试,调试不明白了还可以上网查一下.可是面试的时候,就是得当场反应出来,并且还得能系统的说出1.2.3.4.5 ...

  8. iOS6 自动布局 入门–Auto Layout

    目前为止,即使你的界面设计是在合理的复杂度内,你也必须要为之写许多代码来适应变化的布局.现在我相信你会很高兴听到这种情况将不会发生了-对于iPhone与iPad IOS6 带来了一个非常了不起的特征: ...

  9. 使用OpenCV对图像进行缩放

    OpenCV:图片缩放和图像金字塔 对图像进行缩放的最简单方法当然是调用resize函数啦! resize函数可以将源图像精确地转化为指定尺寸的目标图像. 要缩小图像,一般推荐使用CV_INETR_A ...

  10. 【转】C#中的线程 入门

    Keywords:C# 线程 Source:http://www.albahari.com/threading/ Author: Joe Albahari Translator: Swanky Wu ...