【HNOI2008】玩具装箱TOY & 斜率优化学习笔记
题目
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为 \(1\cdots N\) 的 \(N\) 件玩具,第 \(i\) 件玩具经过压缩后变成一维长度为 \(C_i\) .为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第 \(i\) 件玩具到第 \(j\) 个玩具放到一个容器中,那么容器的长度将为 \(x=j-i+\sum\limits_{k=i}^{j}C_k\) 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为 \(x\) ,其制作费用为 \((x-L)^2\) .其中 \(L\) 是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过 \(L\) 。但他希望费用最小.
\(0\le n \le 5\times 10^4\)
分析
设 \(f_i\) 代表前 \(i\) 个玩具的最小费用。
显然有:
\]
其中,\(S_{i} = \sum_{j=0}^i C_j\).
使用换元法,将只与 \(i\) 或 \(j\) 有关的项提取出来。(常数项无所谓)
设 \(A_i = i + S_i\), \(B_i = A_i + L + 1\).
则有:
\]
对于决策 \(j\) ,设:
\]
最优的 \(j\) 就是使 \(b\) 最小的 \(j\).
移项得:
\]
发现这个式子非常眼熟,设 \(k = 2A_i, y = f_j + B_j^2, x = B_j\).
就变成了直线的解析式:\(y = kx + b\)
而这个式子中,对于所有的决策,斜率 \(k\) 都是常量,我们需要找到一个 \(j\) 使得截距最小。
对于每一个决策 \(j\) 都给出了一个点 \(P_j(B_j, f_j + B_j^2)\),问题就转换成了:已知若干个点和斜率(\(k>0\)),求过这些点之中一个且斜率为给定值的直线中截距最小的一个。
考虑这样一条不断向上移动的直线,当它不断上移时截距越来越大,直到它碰到第一个点为止,这个点就是使截距最小的点。
引理:候选决策连线段的斜率必然递增
证明:\(j\) 要是 \(i\) 时最优决策,它必须满足:
\]
即:
2A_i(B_j + B_k) & < f_k + B_k^2 - f_j - B^2_j \\
2A_i & < \frac{f_k + B_k^2 - (f_j + B^2_j)}{B_j + B_k}
\end{align*}
\]
我们发现,这就是 \(P_jP_i\) 的斜率 \(> 2A_i\).
而 \(2A_i\) 就是我们不断上移的直线的斜率 \(k\).
所以,若 \(B\) 可能是最优决策点,则另外一个可能的最优决策点 \(C\) 必然在直线 \(y = kx + b\) 的左侧而非右侧。
所以,最优解一定在决策的下凸壳上。
我们可以轻易的证明 \(A_i\) 单调递增。
考虑使用一个单调队列维护第一个使得斜率 \(>A_i\) 的点,然后就结束了。
不过,有时候 \(A_i\) 没有单调递增,那就需要Cdq或者平衡树维护了,那就是下篇的事了。
代码
#include <bits/stdc++.h>
typedef long long ll;
const double eps = 1e-7;
const int kMaxN = 5e5 + 5;
ll S[kMaxN], f[kMaxN], C[kMaxN], n, L;
std::deque<int> que;
ll A(int i) {return i + S[i];}
ll B(int i) {return A(i) + L + 1;}
ll PointX(int i) {return B(i);}
ll PointY(int i) {return f[i] + B(i) * B(i);}
double Slope(int i, int j) {
return (PointY(i) - PointY(j)) / (double)(PointX(i) - PointX(j));
}
int main() {
scanf("%lld%lld", &n, &L);
for(int i = 1; i <= n; i++) {
scanf("%lld", C + i);
S[i] = S[i - 1] + C[i];
}
f[0] = 0;
que.push_back(0);
for(int i = 1; i <= n; i++) {
while(que.size() > 1 && Slope(que.front(), que[1]) < 2 * A(i))
que.pop_front();
int tmp = que.front();
f[i] = f[tmp] + (A(i) - B(tmp)) * (A(i) - B(tmp));
while(
que.size() > 1 &&
Slope(que.back(), i) < Slope(que.back(), que[que.size() - 2])
)
que.pop_back();
que.push_back(i);
}
printf("%lld", f[n]);
return 0;
}
【HNOI2008】玩具装箱TOY & 斜率优化学习笔记的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...
随机推荐
- [转]Android Studio启动时出现unable to access android sdk add-on list
转载请标明出处:http://blog.csdn.net/xx326664162/article/details/50563122 文章出自:薛瑄的博客 你也可以查看我的其他同类文章,也会让你有一定的 ...
- SpringMVC学习记录七——sjon数据交互和拦截器
21 json数据交互 21.1 为什么要进行json数据交互 json数据格式在接口调用中.html页面中较常用,json格式比较简单,解析还比较方便. 比如:webservi ...
- jquery插件layer
//信息框-例1 layer.alert('见到你真的很高兴', {icon: 6}); //信息框-例2 layer.confirm('你确定你很帅么?', {icon: 3}, function( ...
- Tomcat 服务器体系结构
connector 监听端口,监听到以后,交给 Engine 引擎 处理,引擎会根据请求找到对应的主机,找到主机后再去找对应的应用. 如果我们将 port 改为 80,那访问的时候就不用输入端口号,因 ...
- TDD:代码可测试设计
1 方法内部代码命令,查询分离. a . 命令方法:执行一系列动作. b. 查询方法: 执行查询动作,并返回值. 2 一个类中有好几个地方都用到了一个或多个全局变量,可以考虑把全局变量封装到另外 ...
- TIDB3 —— 三篇文章了解 TiDB 技术内幕 - 说计算
原文地址:https://pingcap.com/blog-cn/tidb-internal-2/ 关系模型到 Key-Value 模型的映射 在这我们将关系模型简单理解为 Table 和 SQL 语 ...
- 百度 suggestion 学习demo
其他说明文字就不用写那么多了,代码很简单,相信各位道友都能看懂,看不懂的琢磨一下就可以看懂啦.贴代码!拷贝到自己的电脑中运行文件即可,不需要服务器. <!DOCTYPE html> < ...
- php第五节(字符串函数和时间、日期函数)
<?php //查找字符串函数 // strpos() 查找字符第一次出现的位置 重点区分大小写 //stripos — 查找字符串首次出现的位置(不区分大小写) //strrpos — 计算指 ...
- 用户交互input
input() 函数 接收到的都是str,如果输入为数字,打印结果想进行运算,此时需要转义.语法:内容=input("提示信息")这里可以直接获取到用户输入的内容. a = inp ...
- mongodb导入全栈商城的goods和users数据
> show dbsshow dbsadmin 0.000GBconfig 0.000GBlocal 0.000GB> use dumalluse dumallswitched to db ...