Problem Description
Consider a Depth-First-Search(DFS) spanning tree T of a undirected connected graph G, we define a T-Simple Circle as a path v1, v2, ..., vk (v1 = vk) in G that contains at most one edge which not belongs to the DFS spanning tree T.
Given a graph G, we process DFS on G starting from vertex 1 and get a DFS spanning tree T, then you should choose some edges of G so that all T-Simple Circles contains at least one edge that you choose.
Please minimize the number of edges you choose.
 
Input
There are at most 100 test cases.
For each case, the first line contains two integers n and m denoting the number of vertices and edges. The vertexes are numbered from 1 to n.
The following m lines describe the graph. Each line contains two integers xi and yi, denoting an edge between vertex xi and yi(xi ≠ yi).
Note that the first n-1 edges of input construct a DFS spanning tree T which is generated by DFS from vertex 1.
Input ends with n = 0 and m = 0
(1 <= n <= 2000, 1 <= m <= 20000, 1 <= xi, yi <= n)
 
Output
For each case, output the number of minimal edges that you choose.
 
PS:有个大于号写反了居然过了样例……样例不要这么坑爹好吗……
 
代码(812MS):
 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std; const int MAXN = ;
const int MAXE = ; int dep[MAXN]; struct Edge {
int x, y, id;
void read(int i) {
id = i;
scanf("%d%d", &x, &y);
}
void adjust() {
if(dep[x] > dep[y]) swap(x, y);
}
bool operator < (const Edge &rhs) const {
return dep[x] > dep[rhs.x];
}
} e[MAXE]; int n, m;
int head[MAXN], fa[MAXN];
int to[MAXN * ], next[MAXN * ];
int ecnt; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge2(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} void bfs() {
memset(dep, -, sizeof(dep));
queue<int> que; que.push();
dep[] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(dep[v] == -) {
fa[v] = u;
dep[v] = dep[u] + ;
que.push(v);
}
}
}
} bool vis[MAXN]; bool check(Edge &p) {
int now = p.y;
while(fa[now] != p.x) {
if(vis[now]) break;
now = fa[now];
}
if(!vis[now]) {
vis[now] = true;
return false;
}
else return true;
} int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if(n == && m == ) break;
for(int i = ; i <= m; ++i) e[i].read(i);
init();
for(int i = ; i < n; ++i) add_edge2(e[i].x, e[i].y);
bfs();
for(int i = n; i <= m; ++i) e[i].adjust();
sort(e + , e + m + );
memset(vis, , sizeof(vis));
int ans = ;
for(int i = ; i <= m; ++i)
if(e[i].id >= n && !check(e[i])) ++ans;
printf("%d\n", ans);
}
}

HDU 4582 DFS spanning tree(DFS+贪心)(2013ACM-ICPC杭州赛区全国邀请赛)的更多相关文章

  1. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  3. HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and ...

  4. HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)

    Minimal Ratio Tree Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  5. [hdu4582]DFS spanning tree

    考虑每一条非树边都连接了祖先和儿子,类似于序列上的问题,从底往上算,当发现如果走到某个环的祖先,且这个环中还没有被选到,那么就将最浅的那条边贪心选择即可具体实现可以使用bitset维护当前子树的询问, ...

  6. HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)

    想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...

  7. [2019杭电多校第四场][hdu6614]AND Minimum Spanning Tree(贪心)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6614 题目大意是有一张n个点的完全图,n个点点权为1-n,边权为两点点权按位与(&).求最小生 ...

  8. HDU 4896 Minimal Spanning Tree(矩阵高速功率)

    意甲冠军: 给你一幅这样子生成的图,求最小生成树的边权和. 思路:对于i >= 6的点连回去的5条边,打表知907^53 mod 2333333 = 1,所以x的循环节长度为54,所以9个点为一 ...

  9. HDU 4573 Throw the Stones(动态三维凸包)(2013 ACM-ICPC长沙赛区全国邀请赛)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4573 Problem Description Remember our childhood? A fe ...

随机推荐

  1. Vue nodejs商城项目- 前后端数据传递

    .利用Mongoose查询MongoDB 通过mongoose插件可以简捷地从mondodb中获取数据,首先安装mongoose: cnpm install mongoose --save   使用m ...

  2. c# 获取网络流量

    public class ip_helper{enum Constants {MAX_INTERFACE_NAME_LEN=256, MAXLEN_PHYSADDR=8,MAXLEN_IFDESCR= ...

  3. zepto 基础知识(5)

    81.width width() 类型:number width(value) 类型:self width(function(index,oldWidth){....}) 类型:self 获取对象集合 ...

  4. Java常用的正则校验

    1.非负整数: (^[1-9]+[0-9]*$)|(^[0]{1}$) 或 (^[1-9]+[0-9]*$)|0 2.非正整数: (^-[1-9]+[0-9]*$)|(^[0]{1}$) 或 (^-[ ...

  5. linux系统基础之---RPM管理(基于centos7.4)

  6. 14.2 multiprocessing--多线程

    本模块提供了多进程进行共同协同工作的功能.由于Python存在GIL锁,对于多线程来说,这只是部分代码可以使用多CPU的优势,对于想全部使用多CPU的性能,让每一个任务都充分地使用CPU,那么使用多进 ...

  7. Static关键字,遇到的问题_1

    一.问题 父类代码:                                                                                          ...

  8. 学习photoshop心得

    简要的学习了ps的三大功能p图,抠图,作图, p图主要是学了换脸这一效果,用到套索工具,把范冰冰的脸接到郭德纲身上, 首先使用套索工具把脸圈起来 然后移动到 另一个人脸上 再然后混合图层,自动混合 差 ...

  9. python学习之常用模块

  10. Redis缓存数据库的安装与配置(2)

    1.为php安装redis客户端扩展 wget https://github.com/nicolasff/phpredis/archive/master.zip tar xf phpredis-mas ...