【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态
我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k])+|a[i]-j|(k<=j),于是我们的思路就去了各种数据结构…….然后我们发现对于这些转移就是在记录小于等于,那么我们直接带状态里体现这一点就可以了,而不是在转移的时候,我们f[i][j]表示到了第i个点小于等于j的高度的最小花费,这样我们就n^2了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 2010
using namespace std;
inline int read()
{
register int sum=;register char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')sum=(sum<<)+(sum<<)+ch-'',ch=getchar();
return sum;
}
int a[N],f[N][N],ans,n,pos[N],len,Hash[N];
int comp(const int x,const int y){
return a[x]<a[y];
}
inline int Min(int x,int y){
return x<y?x:y;
}
inline int Abs(int x){
return x<?-x:x;
}
inline int get_Min(){
memset(f,0x7f,sizeof(f));register int ans=0x7fffffff;
for(register int i=;i<=len;i++)f[][i]=Min(f[][i-],Abs(Hash[i]-Hash[a[]]));
for(register int i=;i<=n;i++)
for(register int j=;j<=len;j++)
f[i][j]=Min(f[i][j-],f[i-][j]+Abs(Hash[j]-Hash[a[i]]));
for(register int i=;i<=len;i++)ans=Min(ans,f[n][i]);
return ans;
}
inline int get_Max(){
memset(f,0x7f,sizeof(f));register int ans=0x7fffffff;
for(register int i=;i<=len;i++)f[][i]=Min(f[][i+],Abs(Hash[i]-Hash[a[]]));
for(register int i=;i<=n;i++)
for(register int j=len;j>;j--)
f[i][j]=Min(f[i][j+],f[i-][j]+Abs(Hash[j]-Hash[a[i]]));
for(register int i=;i<=len;i++)ans=Min(ans,f[n][i]);
return ans;
}
int main(){
n=read();for(register int i=;i<=n;i++)a[i]=read(),pos[i]=i;
sort(pos+,pos+n+,comp);
for(register int i=;i<=n;i++)
if(i==||a[pos[i]]!=a[pos[i-]])Hash[++len]=a[pos[i]],a[pos[i]]=len;
else a[pos[i]]=len;
printf("%d",Min(get_Min(),get_Max()));
}
【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态的更多相关文章
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )
最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】
因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差 以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对 ...
- 1592: [Usaco2008 Feb]Making the Grade 路面修整
1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 428 Solv ...
- 【BZOJ】1592: [Usaco2008 Feb]Making the Grade 路面修整
[算法]动态规划DP [题解] 题目要求不严格递增或不严格递减. 首先修改后的数字一定是原来出现过的数字,这样就可以离散化. f[i][j]表示前i个,第i个修改为第j个数字的最小代价,a表示排序后数 ...
- 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整
贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...
- 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
随机推荐
- nginx配置SSL证书/强制跳转与非强制跳转
支持强制跳转HTTPS server { listen 80; server_name www.test.com; rewrite ^(.*)$ https://${server_name}$1 pe ...
- 如何在WIN7_64环境下安装Oracle10g_64位版本
转载请注明出处http://www.cnblogs.com/SharpL/p/4338638.html 1.如果之前安装过Oracle软件,建议完全卸载(究竟有没有必要_不知道_我是这么做的) 2.清 ...
- java入门---简介&简单输出小例子&开发前准备
Java是由Sun Microsystems公司于1995年5月推出的Java面向对象程序设计语言和Java平台的总称.由James Gosling和同事们共同研发,并在1995年正式推出.J ...
- Django学习之天气调查实例(3):部署静态文件CSS、JS、images等(部署环境基于Ubuntu)
在设计登录界面时,采用了网上下载的登录模板,漂亮,简易.但是在测试和部署时,发现原来模板中采用的js文件和css文件,却着实让我折腾了好几天. 在以往的网页设计中,一般只要把测试站点开启后,网页中的静 ...
- 新版IdFTP解决中文乱码问题
用XE10后开发FTP客户端,发现有中文乱码问题.这里也主要是编码的问题,在connect链接后,需要设置编码方可. 注意: IndyTextEncoding_OSDefault; 该代码可能需 ...
- PIC32MZ 通过U盘在线升级 -- USB Host bootloader
了解bootloader的实现,请加QQ: 1273623966(验证填bootloader); 欢迎咨询或定制bootloader; 我的博客主页 www.cnblogs.com/geekygeek ...
- php杂记——1(基础知识与文件读写)
1.变量前面需要加美元符号"$",常量则不需要: define('PRICE',100); echo PRICE; 2.用一个变量的值作为另一个变量的名称可以得到类似C中的指针变量 ...
- vi编辑图
vi使用方法
- Django笔记 —— Admin(Django站点管理界面)
最近在学习Django,打算玩玩网页后台方面的东西,因为一直很好奇但却没怎么接触过.Django对我来说是一个全新的内容,思路想来也是全新的,或许并不能写得很明白,所以大家就凑合着看吧- 本篇笔记(其 ...
- Spring常用注解用法总结
转自http://www.cnblogs.com/leskang/p/5445698.html 1.@Controller 在SpringMVC 中,控制器Controller 负责处理由Dispat ...