Cipher
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 21436   Accepted: 5891

Description

Bob and Alice started to use a brand-new encoding scheme. Surprisingly it is not a Public Key Cryptosystem, but their encoding and decoding is based on secret keys. They chose the secret key at their last meeting in Philadelphia on February 16th, 1996. They chose as a secret key a sequence of n distinct integers, a1 ; . . .; an, greater than zero and less or equal to n. The encoding is based on the following principle. The message is written down below the key, so that characters in the message and numbers in the key are correspondingly aligned. Character in the message at the position i is written in the encoded message at the position ai, where ai is the corresponding number in the key. And then the encoded message is encoded in the same way. This process is repeated k times. After kth encoding they exchange their message.

The length of the message is always less or equal than n. If the message is shorter than n, then spaces are added to the end of the message to get the message with the length n.

Help Alice and Bob and write program which reads the key and then a sequence of pairs consisting of k and message to be encoded k times and produces a list of encoded messages.

Input

The input file consists of several blocks. Each block has a number 0 < n <= 200 in the first line. The next line contains a sequence of n numbers pairwise distinct and each greater than zero and less or equal than n. Next lines contain integer number k and one message of ascii characters separated by one space. The lines are ended with eol, this eol does not belong to the message. The block ends with the separate line with the number 0. After the last block there is in separate line the number 0.

Output

Output is divided into blocks corresponding to the input blocks. Each block contains the encoded input messages in the same order as in input file. Each encoded message in the output file has the lenght n. After each block there is one empty line.

Sample Input

10
4 5 3 7 2 8 1 6 10 9
1 Hello Bob
1995 CERC
0
0

Sample Output

BolHeol  b
C RCE 置换的幂运算也可以用快速幂来做 代码:
 #include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MAXN 205
int a[MAXN];
int n;
void zh(int* a,int *b)
{
int temp[MAXN];
int temp1[MAXN];
int i;
for(i=;i<=n;i++)
{
temp[i]=a[i];
temp1[i]=b[i];
}
for(i=;i<=n;i++)
a[i]=temp1[temp[i]];
}
void solve(int k,int *re)
{
int i;
int ans[MAXN];
int temp[MAXN];
for(i=;i<=n;i++)
{
temp[i]=a[i];
ans[i]=i;
}
while(k)
{
if(k&)
zh(ans,temp);
zh(temp,temp);
k>>=;
}
for(i=;i<=n;i++)
{
re[ans[i]]=i;
}
}
int main()
{
int k;
int i;
char str[MAXN];
int re[MAXN];
int len;
int cnt;
char ch;
while(scanf("%d",&n))
{
if(n==)
break;
for(i=;i<=n;i++)
scanf("%d",&a[i]);
while(scanf("%d",&k))
{
if(k==)
break;
getchar();
memset(str,' ',sizeof(str));
len=;
while((ch=getchar())!='\n')
str[len++]=ch;
solve(k,re);
cnt=;
for(i=;i<=n;i++)
{
printf("%c",str[re[i]-]);
if(re[i]-<len)
cnt++;
}
printf("\n");
}
printf("\n");
}
return ;
}

POJ1026 Cipher(置换的幂运算)的更多相关文章

  1. 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)

    CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description ...

  2. poj 3128 Leonardo&#39;s Notebook(置换的幂)

    http://poj.org/problem?id=3128 大致题意:输入一串含26个大写字母的字符串,能够把它看做一个置换.推断这个置换是否是某个置换的平方. 思路:具体解释可參考url=ihxG ...

  3. poj 3128 Leonardo's Notebook (置换群的整幂运算)

    题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd9 ...

  4. 迭代加深搜索 codevs 2541 幂运算

    codevs 2541 幂运算  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 从m开始,我们只需要6次运算就可以计算出 ...

  5. 算数运算符: + - * / //(地板除) %(取余) **(幂运算) / 比较运算符 > < >= <= == !=

    # ### python运算符 #(1) 算数运算符: + - * / //(地板除) %(取余) **(幂运算) var1 = 5 var2 = 8 # +res = var1 + var2 pri ...

  6. 求幂运算、多项式乘法及Horner法则的应用

    一,两种不同的求幂运算 求解x^n(x 的 n 次方) ①使用递归,代码如下: private static long pow(int x, int n){ if(n == 0) return 1; ...

  7. LeetCode 50 Pow(x, n) (实现幂运算)

    题目链接:https://leetcode.com/problems/powx-n/?tab=Description   Problem:实现幂运算即 pow(x,n)   设形式为pow(x,n)  ...

  8. Python3基础 ** 幂运算 // 整除运算

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  9. 《挑战程序设计竞赛》2.6 数学问题-快速幂运算 POJ1995

    POJ3641 此题应归类为素数. POJ1995 http://poj.org/problem?id=1995 题意 求(A1^B1+A2^B2+ - +AH^BH)mod M. 思路 标准快速幂运 ...

随机推荐

  1. 第三天--html列表

    <!Doctype html><html>    <head>        <meta charset="utf-8">      ...

  2. 使用Spring Task轻松完成定时任务

    一.背景 最近项目中需要使用到定时任务进行库存占用释放的需求,就总结了如何使用Spring Task进行简单配置完成该需求,本文介绍Spring3.0以后自定义开发的定时任务工具, spring ta ...

  3. js获取文档高度

    网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽: document.body.offsetWi ...

  4. 在jquery中,全选/全不选的表示方法

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  5. ThreadStart 与ParameterizedThreadStart的区别

    1) ParameterizedThreadStart与ThreadStart 1 static void Main(string[] args) { #region ParameterizedThr ...

  6. python ImportError: No module named builtins

    解决方案: sudo pip install future

  7. 虚拟机主机能互相ping通,但是无法远程连接

    首先将虚拟机关机,找到Edit virtual machine Settings(编辑虚拟机设置)

  8. jQuery判断checked的三种方法

    今天在查看他人源码时看到在判断复选框是否选中时,与自己的写法不同: .is(":checked") vs .prop("checked") == true 因此 ...

  9. MySLQ 为数据库远程授权的方法与问题的解决解决方法

    Mysql通过远程的连接工具连接,提示Can't connect to MySQL server (10060).  这个时候我们需要分析,看哪里设置不当而导致的该问题.   工具/原料 mysql数 ...

  10. Pascal 语言中的关键字及保留字

    absolute //指令(变量) abstract //指令(方法) and //运算符(布尔) array //类型 as //运算符(RTTI) asm //语句 assembler //向后兼 ...