hdu 1233 还是畅通工程 最小生成树(prim算法 + kruskal算法)
还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
当N为0时,输入结束,该用例不被处理。
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
5
Hint
Huge input, scanf is recommended.
在无向带权连通图G中,如果一个连通子树包含所有顶点,并且连接这些顶点的边权之和最小,
那么这个连通子图就是G的最小生成树。求最小生成树的一个常见算法是Prim算法。
Prim算法的基本思想是:
1)设置两个集合V和S,任意选择一个顶点作为起始顶点,将起始顶点放入集合S,其余顶点存入集合
V中;2)然后使用贪心策略,选择一条长度最短并且端点分别在S和V中边(即为最小生成树的中的一条
边),将这条边在V中的端点加入到集合S中;3)循环执行第2)步直到S中包含了所有顶点。
#include<stdio.h>
#include<string.h>
#define inf 0x3f3f3f3f
int map[100][100],s[100],vis[100];
int n,m;
int prim()
{
int i,j,t,p,min,minpos,cnt;
int ans=0;
cnt=0; /*记录已经加入的点的个数*/
vis[1]=1; /*从第一个点开始找*/
s[cnt++]=1; /*s数组保存已经加入的点*/
while(cnt<n) /*点还没有加入完*/
{
t=cnt;
min=inf;
for(i=0;i<t;i++)
{
p=s[i];
for(j=1;j<=n;j++)
{
if(!vis[j]&&map[p][j]<min) /*在已经加入的点和没加入的点之间找出一条最短路,*/
{
min=map[p][j];
minpos=j; /*记录下新找到的最短路的端点*/
}
}
}
ans+=min;
s[cnt++]=minpos; /*更新已经加入的点*/
vis[minpos]=1;
}
return ans;
}
int main()
{
int u,v,w,i;
while(~scanf("%d",&n)&&n)
{
m=n*(n-1)/2;
memset(vis,0,sizeof(vis));
memset(map,inf,sizeof(map));
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
map[u][v]=w;
map[v][u]=w;
}
int sum=prim();
printf("%d\n",sum);
}
return 0;
}
上面的算法有三个循环,时间复杂度为O(N^3),考虑到由于使用的是贪心策略,则每添加一个新顶点到集合S中的时候,才会改变V中每个点到S中的点的最小边的长度。因此可以用一个数组nearest[N](N为顶点个数)记录在生成最小数的过程中,记录V中每个点的到S中点的最小边长,用另外一个数组adj[N]记录使得该边最小的对应的邻接点。那么O(N)的时间了找到最短的边,并且能在O(N)的时间里更新nearest[N]和adj[N]。因此可以得到O(N^2)的算法。
#include<stdio.h>
#include<string.h>
#define inf 0x3f3f3f3f
int map[100][100];
int n,m;
/*记当前生成树的节点集合为S,未使用的节点结合为V*/
int vis[100]; //标记某个点是否在S中
int adj[100]; //记录与S中的点最接近的点
int nearest[100]; //记录V中每个点到S中的点的最短边
int prim()
{
int i,j,min;
int ans=0;
vis[1]=1;
for(i=2;i<=n;i++)
{
nearest[i]=map[1][i];
adj[i]=1;
}
int cnt=n-1; /*记录边的条数*/
while(cnt--)
{
min=inf;
j=1;
for(i=1;i<=n;i++)
{
if(!vis[i]&&nearest[i]<min)
{
min=nearest[i];
j=i;
}
}
ans+=map[j][adj[j]];
vis[j]=1;
for(i=1;i<=n;i++)
{
if(!vis[i]&&map[i][j]<nearest[i])
{
nearest[i]=map[i][j]; /*找最短的边*/
adj[i]=j; /*找最接近的点*/
}
}
}
return ans;
}
int main()
{
int i,sum,u,v,w;
while(~scanf("%d",&n)&&n)
{
memset(vis,0,sizeof(vis));
memset(map,0,sizeof(map));
m=n*(n-1)/2;
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
map[u][v]=map[v][u]=w;
}
sum=prim();
printf("%d\n",sum);
}
return 0 ;
}
给定无向连同带权图G = (V,E),V = {1,2,...,n}。Kruskal算法构造G的最小生成树的基本思想是:
(1)首先将G的n个顶点看成n个孤立的连通分支。将所有的边按权从小大排序。
(2)从第一条边开始,依边权递增的顺序检查每一条边。并按照下述方法连接两个不同的连通分支:当查看到第k条边(v,w)时,如果端点v和w分别是当前两个不同的连通分支T1和T2的端点是,就用边(v,w)将T1和T2连接成一个连通分支,然后继续查看第k+1条边;如果端点v和w在当前的同一个连通分支中,就直接再查看k+1条边。这个过程一个进行到只剩下一个连通分支时为止。
此时,已构成G的一棵最小生成树。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int father[100];
int n,m;
struct point
{
int u;
int v;
int w;
}a[5000];
bool comp(point a1,point a2) /*按权值从小到大排序*/
{
return a1.w<a2.w;
}
void initial() /*并查集初始化*/
{
for(int i=0;i<=100;i++)
father[i]=i;
}
int find(int x) /*查找根节点*/
{
if(father[x]==x)
return x;
return find(father[x]);
}
void merge(int p,int q) /*合并两个集合*/
{
int pp=find(p);
int qq=find(q);
if(pp!=qq)
{
if(pp<qq)
father[qq]=pp;
else
father[pp]=qq;
}
}
int kruskal()
{
initial(); /*初始化*/
int ans=0;
sort(a+1,a+m+1,comp); /*排序*/
for(int i=1;i<=m;i++)
{
int x=find(a[i].u);
int y=find(a[i].v);
if(x!=y) /*两端点不属于同一集合*/
{
ans+=a[i].w;
merge(x,y); /*合并*/
}
}
return ans;
}
int main()
{
int i,sum;
while(~scanf("%d",&n)&&n!=0)
{
m=n*(n-1)/2;
for(i=1;i<=m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sum=kruskal();
printf("%d\n",sum);
}
return 0;
}
hdu 1233 还是畅通工程 最小生成树(prim算法 + kruskal算法)的更多相关文章
- HDU.1233 还是畅通工程(Prim)
HDU.1233 还是畅通工程(Prim) 题意分析 首先给出n,代表村庄的个数 然后出n*(n-1)/2个信息,每个信息包括村庄的起点,终点,距离, 要求求出最小生成树的权值之和. 注意村庄的编号从 ...
- HDU 1233.还是畅通工程-最小生成树(Prime)
还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- HDU 1233 还是畅通工程 (最小生成树)
还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- HDU 1233 还是畅通工程(最小生成树,prim)
题意:中文题目 思路:prim实现,因为有n*(n-1)/2条边,已经是饱和的边了,prim比较合适. (1)将点1置为浏览过,点1可以到达其他每个点,所以用low[i]数组记录下目前到达i点的最小长 ...
- HDU 1233 还是畅通工程(模板——克鲁斯卡尔算法)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1233 题意描述: 输入n个城镇以及n*(n-1)/2条道路信息 计算并输出将所有城镇连通或者间接连通 ...
- (step6.1.5)hdu 1233(还是畅通工程——最小生成树)
题目大意:输入一个整数n,表示有n个村庄,在接下来的n*(n-1)/2中,每行有3个整数beigin.end.weight,分别表示路的起始村庄,结束村庄和村庄之间的距离. 求索要修的路的最短距离 解 ...
- hdu 1233 还是畅通工程 (最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1233 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) ...
- HDU 1233 还是畅通工程(Kruskal算法)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1233 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) ...
- 还是畅通工程(prim和kruskal)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1233 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) ...
随机推荐
- spring aop与aspectj
AOP:面向切面编程 简介 AOP解决的问题:将核心业务代码与外围业务(日志记录.权限校验.异常处理.事务控制)代码分离出来,提高模块化,降低代码耦合度,使职责更单一. AOP应用场景: 日志记录.权 ...
- AngularJs学习——模拟用户登录的简单操作
效果截图:
- JS模块化工具requirejs教程02
基本API require会定义三个变量:define,require,requirejs,其中require === requirejs,一般使用require更简短 define 从名字就可以看出 ...
- 汕头市队赛 SRM 06 C 秀恩爱
C 秀恩爱 SRM 06 背景&&描述 KPM坐在直升机上俯瞰小渔村景象. 渔村可看作二维平面,密密麻麻地到处都是单身狗,KPM当前所在坐标为(sx,s ...
- [POJ3237]Tree解题报告|树链剖分|边剖
关于边剖 之前做的大多是点剖,其实转换到边剖非常简单. 我的做法是每个点的点权记录其到父亲节点的边的边权. 只要solve的时候不要把最上面的点记录在内就可以了. Tree Description Y ...
- USB接口无法识别设备
http://windows.microsoft.com/zh-cn/windows/answers?tId=14fa1e44-0a19-48ef-9ba7-b7e512a837a4 小琼子 提问 2 ...
- Vmware中安装和卸载Linux 16.04.3
1.先去这个链接 https://www.ubuntu.com/download ,下载ubuntu镜像,也就是下图的download选项 2.下载后到虚拟机里创建一个新的虚拟机,然后按照博客 htt ...
- maven自动建立目录骨架
maven提供archetype插件,用于创建符合maven规定的目录骨架. 方式一: 命令行执行mvn archetype:generate,在回显中依次写入如下参数: 执行完成会自动的生成响应的标 ...
- 【 Linux】脚本导入格式
在从windows文本(*.txt)格式导入到Linux中时,需要注意. 如果是直接将*.txt 导入到Linux系统,然后重命名使用会有问题,建议在linux系统中创建文件,然后直接复制内容到lin ...
- KVM(七)使用 libvirt 做 QEMU/KVM 快照和 Nova 实例的快照
本文将梳理 QEMU/KVM 快照相关的知识,以及在 OpenStack Nova 中使用 libvirt 来对 QEMU/KVM 虚机做快照的过程. 1. QEMU/KVM 快照 1.1 概念 QE ...