Today, Bob plays with a child. There is a row of n

numbers. One can takes a number from the left side or the right side in turns and gets the grade which equals to the number. Bob knows that the child always chooses the bigger number of the left side and right side. If the number from two sides is equal, child will always choose the left one.
The child takes first and the person who gets more grade wins. The child will be happy only when he wins the game.

Bob wants to make the child happy, please help him calculate the minimal difference of their grades when he loses the game.

InputThere are T test cases (T≤2).

For each test case:

the first line only contains a number n (1≤n≤90&&n%2==0)

The second line contains n integers: a1,a2…an(1≤ai≤105).

OutputFor each test ease, you should output the minimal difference
of their grades when Bob loses the game. If Bob can't lose the game,
output "The child will be unhappy...".

Sample Input

4
2 1 5 3
2
2 2

Sample Output

5
The child will be unhappy...

Child每次取最大的,如果相等就取左边的;

那么我们可以记忆化搜索出[L,R]区间的按游戏规则的可以取到的最大值和最小值;
df 表示 Grade_bob - Grade_child 的值;
如果df+dpmin[L,R]>0,那么剪去;
如果df+dpmax[L,R]<=ans,剪去;
如果df+dpmax[L,R]<0,更新,return;
然后就是搜索了,
(卡时也是秀)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n;
int a[maxn];
int sum[maxn];
int dp1[200][200], dp2[200][200];
int ST;
int Lim = 0.00045 * CLOCKS_PER_SEC; int DP1(int l, int r) {
int &ans = dp1[l][r];
if (ans != -1)return ans;
if (l > r)return ans = 0;
if (a[l] >= a[r])
ans = min(DP1(l + 1, r - 1) + a[r], DP1(l + 2, r) + a[l + 1]);
else
ans = min(DP1(l + 1, r - 1) + a[l], DP1(l, r - 2) + a[r - 1]);
return ans;
} int DP2(int l, int r) {
int &ans = dp2[l][r];
if (ans != -1)return ans;
if (l > r)return ans = 0;
if (a[l] >= a[r]) {
ans = max(DP2(l + 1, r - 1) + a[r], DP2(l + 2, r) + a[l + 1]);
}
else ans = max(DP2(l + 1, r - 1) + a[l], DP2(l, r - 2) + a[r - 1]);
return ans;
}
int ans; void dfs(int l, int r, int df) {
if (l > r) {
ans = max(ans, df); return;
}
if (df + 2 * dp1[l][r] - (sum[r] - sum[l - 1]) >= 0)return;
if (df + 2 * dp2[l][r] - (sum[r] - sum[l - 1]) <= ans)return;
if (df + 2 * dp2[l][r] - (sum[r] - sum[l - 1]) < 0) {
ans = max(ans, df + 2 * dp2[l][r] - (sum[r] - sum[l - 1]));
return;
}
if (clock() - ST > Lim)return;
if (a[l] >= a[r]) {
dfs(l + 1, r - 1, df + a[r] - a[l]);
dfs(l + 2, r, df + a[l + 1] - a[l]);
}
else {
dfs(l + 1, r - 1, df + a[l] - a[r]);
dfs(l, r - 2, df + a[r - 1] - a[r]);
}
}
int main()
{
// ios::sync_with_stdio(0); while (cin >> n) {
ms(a); ms(sum);
for (int i = 1; i <= n; i++)a[i] = rd(), sum[i] = sum[i - 1] + a[i]; ST = clock();
mclr(dp1, -1); mclr(dp2, -1);
DP1(1, n); DP2(1, n);
ans = -inf;
dfs(1, n, 0);
ans = abs(ans);
if (ans >= inf) {
puts("The child will be unhappy...");
}
else printf("%d\n", ans);
}
return 0;
}

hdu 6196 搜索+剪枝的更多相关文章

  1. hdu 5887 搜索+剪枝

    Herbs Gathering Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. hdu 4848 搜索+剪枝 2014西安邀请赛

    http://acm.hdu.edu.cn/showproblem.php?pid=4848 比赛的时候我甚至没看这道题,事实上不难.... 可是说实话,如今对题意还是理解不太好...... 犯的错误 ...

  3. poj 1198 hdu 1401 搜索+剪枝 Solitaire

    写到一半才发现能够用双向搜索4层来写,但已经不愿意改了,干脆暴搜+剪枝水过去算了. 想到一个非常水的剪枝,h函数为  当前点到终点4个点的最短距离加起来除以2.由于最多一步走2格,然后在HDU上T了, ...

  4. hdu 5469 Antonidas(树的分治+字符串hashOR搜索+剪枝)

    题目链接:hdu 5469 Antonidas 题意: 给你一颗树,每个节点有一个字符,现在给你一个字符串S,问你是否能在树上找到两个节点u,v,使得u到v的最短路径构成的字符串恰好为S. 题解: 这 ...

  5. hdu 5113(2014北京—搜索+剪枝)

    题意:有N*M的棋盘,用K种颜色去染,要求相邻块不能同色.已知每种颜色要染的块数,问能不能染,如果能,输出任一种染法. 最开始dfs失败了- -,优先搜索一行,搜完后进入下一列,超时.本来以为搜索不行 ...

  6. NOIP2015 斗地主(搜索+剪枝)

    4325: NOIP2015 斗地主 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 270  Solved: 192[Submit][Status] ...

  7. hdu 5636 搜索 BestCoder Round #74 (div.2)

    Shortest Path  Accepts: 40  Submissions: 610  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: ...

  8. luogu 1731 搜索剪枝好题

    搜索剪枝这个东西真的是骗分利器,然鹅我这方面菜的不行,所以搜索数学dp三方面是真的应该好好训练一下 一本通的确该认真的刷嗯 #include<bits/stdc++.h> using na ...

  9. 搜索+剪枝——POJ 1011 Sticks

    搜索+剪枝--POJ 1011 Sticks 博客分类: 算法 非常经典的搜索题目,第一次做还是暑假集训的时候,前天又把它翻了出来 本来是想找点手感的,不想在原先思路的基础上,竟把它做出来了而且还是0 ...

随机推荐

  1. 08-Location总结图解

    URI解析  首先要判断有没有精准匹配,能不能精准匹配.计算机里面没有什么这种差不多这种东西.跟人聊天才说差不多,最近过得怎么样啊,还行吧,差不多吧,这个不多是多还是不多啊. 预定义库->Gen ...

  2. GCC笔记(警告.优化以及调试选项)

    GCC提供了大量的警告选项,对代码中可能存在的问题提出警告,通常可以使用-Wall来开启以下警告: -Waddress -Warray-bounds (only with -O2) -Wc++0x-c ...

  3. elasticsearch2.x插件之一:marvel(配置)

    Marvel是Elastic公司推出的商业监控方案,是用来监控Elasticsearch集群,历史状态的有力工具,便于性能优化以及故障诊断.监控主要分为六个层面,分别是集群层.节点层.索引层.分片层. ...

  4. iis8不支持 aspnet_regiis.exe -iru 命令的解决办法

    服务器版的限制,我看你给的提示说也可以使用 dism.exe 命令行. C:\> DISM /Online /Enable-Feature /FeatureName:WCF-HTTP-Activ ...

  5. bootstrap设计网站中添加代码高亮插件

    这款插件的名字叫做google-code-prettify 使用该插件之前的效果: 使用插件之后的效果: 接下来说步骤: (1)下载两个文件 http://codecloud.sinaapp.com/ ...

  6. 238. Product of Array Except Self 由非己元素形成的数组

    [抄题]: Given an array of n integers where n > 1, nums, return an array output such that output[i]  ...

  7. 面试题:ConcurrentHashMap实现线程安全的原理

    在ConcurrentHashMap没有出现以前,jdk使用hashtable来实现线程安全,但是hashtable是将整个hash表锁住,所以效率很低下. ConcurrentHashMap将数据分 ...

  8. ROS naviagtion analysis: costmap_2d--Costmap2DROS

    博客转载自:https://blog.csdn.net/u013158492/article/details/50485418 在上一篇文章中moveBase就有关于costmap_2d的使用: pl ...

  9. js 禁止后退键

    function doKey(e) { var ev = e || window.event; //获取event对象 var obj = ev.target || ev.srcElement; // ...

  10. oracle数据库列的操作

    本章和大家分享一下如何在数据库中进行列的一些相关操作. 1.增加列名 (我们先来看一个原始版本) 下面我们增加一个列名tel  记住,增加列时需要把列对应的数据类型要说明,不然会报错. alter t ...