POJ2376

Cleaning Shifts
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14585   Accepted: 3718

Description

Farmer John is assigning some of his N (1 <= N <= 25,000) cows to do some cleaning chores around the barn. He always wants to have one cow working on cleaning things up and has divided the day into T shifts (1 <= T <= 1,000,000), the first being shift 1 and
the last being shift T. 



Each cow is only available at some interval of times during the day for work on cleaning. Any cow that is selected for cleaning duty will work for the entirety of her interval. 



Your job is to help Farmer John assign some cows to shifts so that (i) every shift has at least one cow assigned to it, and (ii) as few cows as possible are involved in cleaning. If it is not possible to assign a cow to each shift, print -1.

Input

* Line 1: Two space-separated integers: N and T 



* Lines 2..N+1: Each line contains the start and end times of the interval during which a cow can work. A cow starts work at the start time and finishes after the end time.

Output

* Line 1: The minimum number of cows Farmer John needs to hire or -1 if it is not possible to assign a cow to each shift.

Sample Input

3 10
1 7
3 6
6 10

Sample Output

2

Hint

This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed. 



INPUT DETAILS: 



There are 3 cows and 10 shifts. Cow #1 can work shifts 1..7, cow #2 can work shifts 3..6, and cow #3 can work shifts 6..10. 



OUTPUT DETAILS: 



By selecting cows #1 and #3, all shifts are covered. There is no way to cover all the shifts using fewer than 2 cows.

Source

题意

John有N头牛,其土地的耕作时间是1-T,给出每头牛的工作区间,问最少需要几头牛可以满足全部耕作时间都至少有一头牛在工作。

思路

标准区间贪心,先按照每头牛的开始时间排序,每次选开始时间小于未覆盖区间的开始时间的牛中,结束时间最大的那个。

代码

Source Code

Problem: 2376		User: liangrx06
Memory: 1308K Time: 360MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <set>
#include <algorithm>
using namespace std; typedef pair<int, int> P;
struct cmp {
bool operator()(const P& a, const P& b)const {
return a.first < b.first;
}
};
typedef set<P, cmp> S; int n, t;
S s; void input()
{
scanf("%d%d", &n, &t);
s.clear();
int i, b, e;
S::iterator it;
for (i = 0; i < n; i ++) {
scanf("%d%d", &b, &e);
it = s.find(P(b, e));
if (it == s.end())
s.insert(P(b, e));
else if ((*it).second < e) {
s.erase(it);
s.insert(P(b, e));
}
}
//for (it = s.begin(); it != s.end(); it ++)
// cout << (*it).first << " " << (*it).second << endl;
} int solve()
{
int res = 0;
int begin = 1;
S::iterator it, it1;
while (s.size()) {
int end = 0;
for (it = s.begin(); it != s.end() && (*it).first <= begin; it ++) {
if ((*it).second > end) {
end = (*it).second;
it1 = it;
}
}
if (end == 0) return -1;
s.erase(it1);
begin = end + 1;
//printf("begin=%d\n", begin);
res ++;
if (begin > t)
return res;
}
return -1;
} int main(void)
{
input(); printf("%d\n", solve()); return 0;
}

POJ1328


Radar Installation
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 67495   Accepted: 15139

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the
sea can be covered by a radius installation, if the distance between them is at most d. We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the
sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
 Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing
two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1

Source

题意:

将一条海岸线看成X轴,X轴上面是大海,海上有若干岛屿,给出雷达的覆盖半径和岛屿的位置,要求在海岸线上建雷达,在雷达能够覆盖全部岛屿情况下,求雷达的最少使用量。

思路:

贪心法求解。先计算雷达覆盖区域与X轴的相交区间(如果不相交则此题解为-1)后,以做区间左值为依据排序。

而后贪心法选择雷达所建位置,下一个雷达建的位置是未覆盖岛屿中最小的区间右值,然后据此更新覆盖的岛屿。

代码:

<pre name="code" class="cpp">Source Code

Problem: 1328		User: liangrx06
Memory: 244K Time: 47MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; const int N = 1000; struct P {
double x, y;
double l, r;
}; int n;
double d;
P p[N]; int input()
{
cin >> n >> d;
if (!n && !d)
return 0;
int flag = 1;
for (int i = 0; i < n; i ++) {
cin >> p[i].x >> p[i].y;
double z = d*d - p[i].y*p[i].y;
if (z < 0) flag = -1;
z = sqrt(z);
p[i].l = p[i].x - z;
p[i].r = p[i].x + z;
}
if (d < 0) flag = -1;
return flag;
} bool cmp(const P &a, const P &b)
{
return a.l < b.l;
} int solve()
{
sort(p, p+n, cmp); int res = 0, i = 0;
double posL, posR;
while (i < n) {
posL = p[i].l;
posR = p[i].r;
i ++;
while ( i < n && p[i].l <= posR ) {
posL = p[i].l;
posR = (p[i].r < posR) ? p[i].r : posR;
i ++;
}
res ++;
}
return res;
} int main(void)
{
int c, flag, res; c = 0;
while ( flag = input() ) {
c ++;
res = -1;
if (flag > 0)
res = solve();
printf("Case %d: %d\n", c, res);
} return 0;
}

POJ3190


Stall Reservations
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4315   Accepted: 1545   Special Judge

Description

Oh those picky N (1 <= N <= 50,000) cows! They are so picky that each one will only be milked over some precise time interval A..B (1 <= A <= B <= 1,000,000), which includes both times A and B. Obviously, FJ must create a reservation system to determine which
stall each cow can be assigned for her milking time. Of course, no cow will share such a private moment with other cows. Help FJ by determining:

  • The minimum number of stalls required in the barn so that each cow can have her private milking period
  • An assignment of cows to these stalls over time

Many answers are correct for each test dataset; a program will grade your answer.

Input

Line 1: A single integer, N Lines 2..N+1: Line i+1 describes cow i's milking interval with two space-separated integers.

Output

Line 1: The minimum number of stalls the barn must have. Lines 2..N+1: Line i+1 describes the stall to which cow i will be assigned for her milking period.

Sample Input

5
1 10
2 4
3 6
5 8
4 7

Sample Output

4
1
2
3
2
4

Hint

Explanation of the sample: 



Here's a graphical schedule for this output:

Time     1  2  3  4  5  6  7  8  9 10

Stall 1 c1>>>>>>>>>>>>>>>>>>>>>>>>>>>

Stall 2 .. c2>>>>>> c4>>>>>>>>> .. ..

Stall 3 .. .. c3>>>>>>>>> .. .. .. ..

Stall 4 .. .. .. c5>>>>>>>>> .. .. ..

Other outputs using the same number of stalls are possible.

Source


《挑战程序设计竞赛》2.2 贪心法-区间 POJ2376 POJ1328 POJ3190的更多相关文章

  1. 挑战程序设计竞赛》P345 观看计划

                                                 <挑战程序设计竞赛>P345 观看计划 题意:一周一共有M个单位的时间.一共有N部动画在每周si时 ...

  2. Aizu 2249Road Construction 单源最短路变形《挑战程序设计竞赛》模板题

    King Mercer is the king of ACM kingdom. There are one capital and some cities in his kingdom. Amazin ...

  3. 《挑战程序设计竞赛》2.3 动态规划-优化递推 POJ1742 3046 3181

    POJ1742 http://poj.org/problem?id=1742 题意 有n种面额的硬币,面额个数分别为Ai.Ci,求最多能搭配出几种不超过m的金额? 思路 据说这是传说中的男人8题呢,对 ...

  4. POJ 2386 Lake Counting 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=2386 <挑战程序设计竞赛>习题 题目描述Description Due to recent rains, water has ...

  5. 《挑战程序设计竞赛》2.2 贪心法-其它 POJ3617 3069 3253 2393 1017 3040 1862 3262

    POJ3617 Best Cow Line 题意 给定长度为N的字符串S,要构造一个长度为N的字符串T.起初,T是一个空串,随后反复进行下列任意操作: 从S的头部(或尾部)删除一个字符,加到T的尾部 ...

  6. poj 3253 Fence Repair 贪心 最小堆 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=3253 题解 本题是<挑战程序设计>一书的例题 根据树中描述 所有切割的代价 可以形成一颗二叉树 而最后的代价总和是与子节点和深 ...

  7. poj 3069 Saruman's Army 贪心 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=3069 题解 题目可以考虑贪心 尽可能的根据题意选择靠右边的点 注意 开始无标记点 寻找左侧第一个没覆盖的点 再来推算既可能靠右的标记点为一 ...

  8. poj 2431 Expedition 贪心 优先队列 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=2431 题解 朴素想法就是dfs 经过该点的时候决定是否加油 中间加了一点剪枝 如果加油次数已经比已知最少的加油次数要大或者等于了 那么就剪 ...

  9. 挑战程序设计竞赛 P131 区间DP

    书上好多题没补 PS.整个DP是根据Q来划分的,dalao的代码就是不一样啊 #include<bits/stdc++.h> #define rep(i,j,k) for(int i=j; ...

随机推荐

  1. select * from (select user())a 为什么是查询user()的意思?

    步骤:1.先查询 select user() 这里面的语句,将这里面查询出来的数据作为一个结果集 取名为 a2.然后 再 select * from a 查询a ,将 结果集a 全部查询出来

  2. What most young programmers need to learn

    In the past 7.5 years I have supervised over a dozen programming interns at Ronimo and have seen hun ...

  3. Hibernate单向“一对多”关联

    1. 基于连接表的单向“一对多”关联,应该优先被采用其中指定many-to-many的unique="true",为单向“一对多”,不指定就是单向“多对多” <class n ...

  4. URL.createObjectURL()

    URL.createObjectURL() 静态方法会创建一个 DOMString,其中包含一个表示参数中给出的对象的URL.这个 URL 的生命周期和创建它的窗口中的 document 绑定.这个新 ...

  5. 保存Hive查询结果的方法

    很多时候,我们需要将Hive的查询(select)结果保存起来,方便进一步处理或查看.在Hive里面提供了不同的方式来保存查询结果,在这里做下总结: 一.保存结果到本地 方法1:调用hive标准输出, ...

  6. Linux命令常用命令

    查看主机IP ifconfig 切换目录 cd cd /home cd /path cd ../path cd 退到home目录 cd .. 退到上层目录 cd / 退到根目录  ls -l 列出数据 ...

  7. 获取Oracle隐含參数信息

    Oracle数据库的初始化參数.主要来源于两个Oracle内部数据字典表:X$KSPPCV和X$KSPPI通常我们查询的V$Parameter视图或使用show parameter命令都是就来源于这两 ...

  8. cookie转coontoin

    /// <summary> /// 一个到多个Cookie的字符串添加到CookieCollection集合中[isGood代码] /// </summary> /// < ...

  9. cef

    http://blog.csdn.net/hats8888/article/details/53886591 http://blog.csdn.net/gong_hui2000/article/det ...

  10. IOS MagicRecord 详解 (转载)

    2014-10-22 14:37 6137人阅读 评论(6) 收藏 举报 IOSMagicRecordCoreData 目录(?)[+] 刚开始接触IOS不久,尝试着翻译一些博客,积累技术,与大家共享 ...