「BZOJ2510」弱题(矩阵乘法,降维)
Input
Output
Sample Input
3 0
Sample Output
1.333
HINT
「样例说明」
第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。
第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。
「数据规模与约定」
对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;
对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;
对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;
对于40%的数据,M ≤ 1000, K ≤ 1000;
对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。
Source
2011福建集训
和之前此题一样, POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化) 。
用dp[i][j]表示i轮后j的数量,则dp=a*(base^K),由于base里面的矩阵有相似性,所以矩阵的复杂度可以优化到N^2;总的复杂度为O(N^2lgK)。
权限题,无代码。
「BZOJ2510」弱题(矩阵乘法,降维)的更多相关文章
- 「BZOJ2510」弱题
「BZOJ2510」弱题 这题的dp式子应该挺好写的,我是不会告诉你我开始写错了的,设f[i][j]为操作前i次,取到j小球的期望个数(第一维这么大显然不可做),那么 f[i][j]=f[i-1][j ...
- 【BZOJ2510】弱题 期望DP+循环矩阵乘法
[BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球 ...
- 「CQOI2006」简单题 线段树
「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...
- BZOJ 2510: 弱题( 矩阵快速幂 )
每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...
- 【BZOJ2510】弱题
题目大意 有\(M\)个球,一开始每个球均有一个初始标号,标号范围为\(1-N\)且为整数,标号为i的球有\(a_i\)个,并保证\(\sum a_i=M\). 每次操作等概率取出一个球(即取出每个球 ...
- bzoj 2510 弱题 矩阵乘
看题就像矩阵乘 但是1000的数据无从下手 打表发现每一行的数都是一样的,只不过是错位的,好像叫什么循环矩阵 于是都可以转化为一行的,O(n3)->O(n2)*logk #include< ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- 【BZOJ 2510】 2510: 弱题 (矩阵乘法、循环矩阵的矩阵乘法)
2510: 弱题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 374 Solved: 196 Description 有M个球,一开始每个球均有一 ...
- ☆ [HDU2157] How many ways?? 「矩阵乘法求路径方案数」
传送门:>Here< 题意:给出一张有向图,问从点A到点B恰好经过k个点(包括终点)的路径方案数 解题思路 一道矩阵乘法的好题!妙哉~ 话说把矩阵乘法放在图上好神奇,那么跟矩阵唯一有关的就 ...
随机推荐
- mysql只能连接localhost解决
grant all privileges on *.* to 'root'@'%' identified by 'root';flush privileges;
- Python 5 面对对象编程
面向对象编程: 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程 ...
- MFC输出调试信息
刚学mfc时只知道用MessageBox输出,可是MessageBox只能输出字符串, 对于习惯于printf的我来说非常不便,后来查了一下mfc可以像printf一样输出, 就是TRACE这个宏,用 ...
- Pro*C基础
SQL变量的申明: EXEC SQL BEGIN DECLARE SECTION; 类型 变量名[长度] varchar2 serv_number[]; 其中可以定义C变量 EXEC SQL END ...
- python中编写无参数decorator
Python的 decorator 本质上就是一个高阶函数,它接收一个函数作为参数,然后,返回一个新函数. 使用 decorator 用Python提供的 @ 语法,这样可以避免手动编写 f = de ...
- Python绿色版
Python 安装的时候,有个选项,是问你要安装给所有用户还是只安装给当前用户,你只要选择当前用户,就会把那些需要的 dll ,包括 msvcr90.dll 都给装到 Python 目录下,你只要把 ...
- ANSI C和POSIX
简单的说 ANSI C:标准C API(对应fopen) POSIX:方便在Linux下运行的C API(对应open)
- 使用easyui的form提交表单,在IE下出现类似附件下载时提示是否保存的现象
之前开发时遇到的一个问题,使用easyui的form提交表单,在Chrome下时没问题的,但是在IE下出现类似附件下载时提示是否保存的现象. 这里记录一下如何解决的.其实这个现象不光是easyui的f ...
- apache基于端口的虚拟主机配置
主机ip: 192.168.7.51 Centos6.5 三个目录/usr/ftp/test/usr/ftp/dev/usr/ftp/demo 实现效果192.168.7.51:8052访问/usr/ ...
- Spark 总结2
网页访问时候 没有打开 注意防火墙! 启动park shell bin下面的spark-shell 这样启动的是单机版的 可以看到没有接入集群中: 应该这么玩儿 用park协议 spark:/ ...