题目

好像\(noip\)之前做某雅礼的题的时候看到过这道题的数据范围增强版

当时那道题数据范围是\(3e5\)感觉神仙的一批

这道题数据范围\(5e3\)那岂不是可以\(O(n^2)\)水过

有一点非常显然就是我们断开的那条边肯定是树的直径上的一条边,于是我们可以先来两遍树形\(dp\)求出子树内最长链,次长链,和子树外最长链

这个时候树的直径就知道啦

我们枚举断边,当然只断直径上的边

之后得到了两个联通块,我们对这两个联通块求一下直径

考虑连接哪两个点会使得新直径尽量小

显然分别从这两个联通块里找到一个点,这个点到联通块内最远的点距离最小

新直径就是\(max\{r_1,r_2,w+d_1+d_2\}\),\(r_1,r_2\)是两个联通块的直径,\(w\)是断开的边的边权,\(d_1,d_2\)是联通块内最远的点距离最小的距离

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 5005
#define LL long long
inline int max(int a,int b) {return a>b?a:b;}
inline int min(int a,int b) {return a<b?a:b;}
inline int read()
{
char c=getchar();int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt,w;}e[maxn<<1];
int head[maxn],f[maxn],g[maxn],t[maxn],T[maxn],F[maxn],dp[maxn];
int n,num,R,ans,root;
inline void add(int x,int y,int z) {e[++num].v=y;e[num].w=z;e[num].nxt=head[x];head[x]=num;}
void dfs(int x,int fa)
{
f[x]=g[x]=0;
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
dfs(e[i].v,x);
if(f[e[i].v]+e[i].w>f[x]) g[x]=f[x],f[x]=f[e[i].v]+e[i].w;
else if(f[e[i].v]+e[i].w>g[x]) g[x]=f[e[i].v]+e[i].w;
else if(g[e[i].v]+e[i].w>g[x]) g[x]=g[e[i].v]+e[i].w;
}
}
void redfs(int x,int fa)
{
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
t[e[i].v]=t[x]+e[i].w;
if(f[e[i].v]+e[i].w==f[x]) t[e[i].v]=max(t[e[i].v],g[x]+e[i].w);
else t[e[i].v]=max(t[e[i].v],f[x]+e[i].w);
redfs(e[i].v,x);
}
dp[x]=max(f[x],t[x]);
}
int find(int x,int fa)
{
int k=dp[x];
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
k=min(k,find(e[i].v,x));
}
return k;
}
void check(int x,int fa)
{
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(T[e[i].v]+F[e[i].v]==R)
{
root=e[i].v;
memset(t,0,sizeof(t));
dfs(e[i].v,x);redfs(e[i].v,x);
dfs(x,0);redfs(x,0);
int now=0;
for(re int j=1;j<=n;++j) now=max(now,f[j]+g[j]);
now=max(now,e[i].w+find(e[i].v,x)+find(x,0));
ans=min(ans,now);
}
check(e[i].v,x);
}
}
int main()
{
n=read();int x,y,z;
for(re int i=1;i<n;i++) x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
dfs(1,0),redfs(1,0);
for(re int i=1;i<=n;i++) R=max(R,f[i]+g[i]);ans=R;
for(re int i=1;i<=n;i++) T[i]=t[i],F[i]=f[i];
check(1,0);
printf("%d\n",ans);
return 0;
}

【[TJOI2017]城市】的更多相关文章

  1. 【BZOJ4890】[TJOI2017]城市(动态规划)

    [BZOJ4890][TJOI2017]城市(动态规划) 题面 BZOJ 洛谷 题解 数据范围都这样了,显然可以暴力枚举断开哪条边. 然后求出两侧直径,暴力在直径上面找到一个点,使得其距离直径两端点的 ...

  2. [洛谷P3761] [TJOI2017]城市

    洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...

  3. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  4. bzoj4890[Tjoi2017]城市(树的半径)

    4890: [Tjoi2017]城市 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 149  Solved: 91[Submit][Status][D ...

  5. [TJOI2017]城市(树的直径)

    [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达, ...

  6. [BZOJ4890][TJOI2017]城市(DP)

    题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收 ...

  7. BZOJ4890 & 洛谷3761:[TJOI2017]城市——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4890 https://www.luogu.org/problemnew/show/P3761 从加 ...

  8. [TJOI2017]城市 【树的直径+暴力+优化】

    Online Judge:Luogu P3761 Label:树的直径,暴力 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有n座城市,n-1条高速公路,保证了 ...

  9. luogu P3761 [TJOI2017]城市 树的直径 bfs

    LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...

  10. [TJOI2017]城市

    嘟嘟嘟 这题刚开始想复杂了,想什么dp去了,其实没那么难. 考虑断掉一条边,记分离出来的两棵子树为A和B,那么合并后的树的直径可能有三种情况: 1.A的直径. 2.B的直径 3.A的半径+边权+B的半 ...

随机推荐

  1. opatch on-line patch and standby-fisrt patch

    opatch on-line patch and standby-fisrt patch on-line patch 有缺陷,不建议使用,standby-fisrt patch 可以考虑使用 #### ...

  2. AttackEnemy人物攻击判断

    AttackEnemy人物攻击判断 /// <param name="attackArea">攻击范围</param> /// <param name ...

  3. Android:Sqlitedatabase学习小结

    今天刚刚学习完Sqlite数据库的基础知识,随即把学到的东西记录下来,以便随后查阅,以下是自己对Sqlite数据库的小结:1.Sqlite简介       Sqlite是一款轻型的数据库,它包含在一个 ...

  4. 牛客网Java刷题知识点之为什么HashMap和HashSet区别

    不多说,直接上干货! HashMap  和  HashSet的区别是Java面试中最常被问到的问题.如果没有涉及到Collection框架以及多线程的面试,可以说是不完整.而Collection框架的 ...

  5. Rabbitmq~对Vhost的配置

    rabbitmq里有一些概念我们要清楚,如vhost,channel,exchange,queue等,而前段时间在部署rabbitmq环境时启用了虚拟主机vhost,感觉他主要是起到了消息隔离的作用, ...

  6. DIV水平垂直居中的CSS兼容写法

    DIV水平垂直居中,非IE浏览器可以用CSS3来处理,IE浏览器中分别处理IE6和/IE7.IE8.IE9. 在IE低版本中,虽然大致上没有问题,但还是有一些细微的显示问题. 示例如下: <!D ...

  7. Zoj 3870——Team Formation——————【技巧,规律】

    Team Formation Time Limit: 3 Seconds      Memory Limit: 131072 KB For an upcoming programming contes ...

  8. D3(v5) in TypeScript 坐标轴之 scaleBand用法

    在学习d3时候,发现在TS中实现D3的坐标轴中遇到一些错误,而这些错误却不会存在于js(因为ts的类型检查)写法中,因此做下笔记: import * as d3 from 'd3';import * ...

  9. Spring入门案例 idea创建Spring项目

    spring入门案例 idea创建spring项目 Spring介绍 Spring概述 Spring是一个开源框架,Spring是2003年兴起的轻量级java开发框架,由Rod Johnson 在其 ...

  10. python占位符%s,%d,%r,%f

    input接收的所有输入默认都是字符串格式 1.%s代表字符串占位符 conn, client_addr = phone.accept() print(conn) print(client_addr) ...