题目

好像\(noip\)之前做某雅礼的题的时候看到过这道题的数据范围增强版

当时那道题数据范围是\(3e5\)感觉神仙的一批

这道题数据范围\(5e3\)那岂不是可以\(O(n^2)\)水过

有一点非常显然就是我们断开的那条边肯定是树的直径上的一条边,于是我们可以先来两遍树形\(dp\)求出子树内最长链,次长链,和子树外最长链

这个时候树的直径就知道啦

我们枚举断边,当然只断直径上的边

之后得到了两个联通块,我们对这两个联通块求一下直径

考虑连接哪两个点会使得新直径尽量小

显然分别从这两个联通块里找到一个点,这个点到联通块内最远的点距离最小

新直径就是\(max\{r_1,r_2,w+d_1+d_2\}\),\(r_1,r_2\)是两个联通块的直径,\(w\)是断开的边的边权,\(d_1,d_2\)是联通块内最远的点距离最小的距离

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 5005
#define LL long long
inline int max(int a,int b) {return a>b?a:b;}
inline int min(int a,int b) {return a<b?a:b;}
inline int read()
{
char c=getchar();int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt,w;}e[maxn<<1];
int head[maxn],f[maxn],g[maxn],t[maxn],T[maxn],F[maxn],dp[maxn];
int n,num,R,ans,root;
inline void add(int x,int y,int z) {e[++num].v=y;e[num].w=z;e[num].nxt=head[x];head[x]=num;}
void dfs(int x,int fa)
{
f[x]=g[x]=0;
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
dfs(e[i].v,x);
if(f[e[i].v]+e[i].w>f[x]) g[x]=f[x],f[x]=f[e[i].v]+e[i].w;
else if(f[e[i].v]+e[i].w>g[x]) g[x]=f[e[i].v]+e[i].w;
else if(g[e[i].v]+e[i].w>g[x]) g[x]=g[e[i].v]+e[i].w;
}
}
void redfs(int x,int fa)
{
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
t[e[i].v]=t[x]+e[i].w;
if(f[e[i].v]+e[i].w==f[x]) t[e[i].v]=max(t[e[i].v],g[x]+e[i].w);
else t[e[i].v]=max(t[e[i].v],f[x]+e[i].w);
redfs(e[i].v,x);
}
dp[x]=max(f[x],t[x]);
}
int find(int x,int fa)
{
int k=dp[x];
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
k=min(k,find(e[i].v,x));
}
return k;
}
void check(int x,int fa)
{
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(T[e[i].v]+F[e[i].v]==R)
{
root=e[i].v;
memset(t,0,sizeof(t));
dfs(e[i].v,x);redfs(e[i].v,x);
dfs(x,0);redfs(x,0);
int now=0;
for(re int j=1;j<=n;++j) now=max(now,f[j]+g[j]);
now=max(now,e[i].w+find(e[i].v,x)+find(x,0));
ans=min(ans,now);
}
check(e[i].v,x);
}
}
int main()
{
n=read();int x,y,z;
for(re int i=1;i<n;i++) x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
dfs(1,0),redfs(1,0);
for(re int i=1;i<=n;i++) R=max(R,f[i]+g[i]);ans=R;
for(re int i=1;i<=n;i++) T[i]=t[i],F[i]=f[i];
check(1,0);
printf("%d\n",ans);
return 0;
}

【[TJOI2017]城市】的更多相关文章

  1. 【BZOJ4890】[TJOI2017]城市(动态规划)

    [BZOJ4890][TJOI2017]城市(动态规划) 题面 BZOJ 洛谷 题解 数据范围都这样了,显然可以暴力枚举断开哪条边. 然后求出两侧直径,暴力在直径上面找到一个点,使得其距离直径两端点的 ...

  2. [洛谷P3761] [TJOI2017]城市

    洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...

  3. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  4. bzoj4890[Tjoi2017]城市(树的半径)

    4890: [Tjoi2017]城市 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 149  Solved: 91[Submit][Status][D ...

  5. [TJOI2017]城市(树的直径)

    [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达, ...

  6. [BZOJ4890][TJOI2017]城市(DP)

    题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收 ...

  7. BZOJ4890 & 洛谷3761:[TJOI2017]城市——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4890 https://www.luogu.org/problemnew/show/P3761 从加 ...

  8. [TJOI2017]城市 【树的直径+暴力+优化】

    Online Judge:Luogu P3761 Label:树的直径,暴力 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有n座城市,n-1条高速公路,保证了 ...

  9. luogu P3761 [TJOI2017]城市 树的直径 bfs

    LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...

  10. [TJOI2017]城市

    嘟嘟嘟 这题刚开始想复杂了,想什么dp去了,其实没那么难. 考虑断掉一条边,记分离出来的两棵子树为A和B,那么合并后的树的直径可能有三种情况: 1.A的直径. 2.B的直径 3.A的半径+边权+B的半 ...

随机推荐

  1. zabbix 另一种方式取 zabbix-sender

    一,zabbix-sender介绍 这种模式是两主机并没有agent互联 使用zabbix-serder的话适用那种没有固定公网IP的,实时系统数据监控操作 还一个实用为零延迟数据监控, 本省zabb ...

  2. (转)Shell中read的用法详解

    Shell中read的用法详解 原文:http://blog.csdn.net/jerry_1126/article/details/77406500 read的常用用法如下: read -[pstn ...

  3. 腾讯毛华:智能交互,AI助力下的新生态

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 演讲人:毛华 腾讯云语音云总经理 背景:5月23-24日,以"焕启"为主题的腾讯"云+未来"峰会在广 ...

  4. 统一latext在vsc的markdown+math和有道云笔记里的出发方式

    起因 前段时间在有道云笔记上写笔记,里面使用latex来记录数学符号,有道云的latex行内触发模式为 `$ latex $`, 之后我在visual studio code里面使用markdown+ ...

  5. 从数据库中导出数据到.csv文件

    考虑到csv文件比xls文件格式容易控制,所以在这次导出中用的是.csv格式. protected function exportInfo($arr, &$err){ $nameInfo = ...

  6. 网页生命周期-PageLoad事件

    PageLoad事件的作用 l 页面载入是执行的处理命令 l 可以动态创建控件 l 可以设置现有控件的属性和状态 l 常用来设置数据库的连接 l 每次页面载入都会执行

  7. vs2017取消起始页(设定起始页)/(.ashx文件的添加)

    1.设定起始页:在要设定起始页的视图(如Index视图)上直接右击,然后点击“设为起始页” 2.取消起始页:点击菜单栏“调试”,然后点击最后一行“项目名+属性”,打开后选中左侧栏中的“web”,选中“ ...

  8. 不同线程不能获取其他线程设置的ThreadLocal里面的值

    背景: 最近在项目用到了ThreadLocal,存放一些值.起线程异步获取ThreadLocal中的值,得到null.这是由于,ThreadLocal.get()会获取当前线程的一个map对象,以Th ...

  9. rest-framework框架——APIView和序列化组件

    一.快速实例 Quickstart http://www.cnblogs.com/yuanchenqi/articles/8719520.html restful协议 ---- 一切皆是资源,操作只是 ...

  10. Celery-------周期任务

    在项目目录例子的基础上进行修改一下celery文件 from celery import Celery from celery.schedules import crontab celery_task ...