POJ 1741:Tree(树上点分治)
题意
给一棵边带权树,问两点之间的距离小于等于K的点对有多少个。
思路

图片转载于http://www.cnblogs.com/Paul-Guderian/p/6782671.html
我对于点分治的理解:对于树上的一些问题,可以转化为答案只与当前根有关的问题,然后分治递归求解每一棵子树,统计答案。找的根应当是当前子树的重心,具体证明可以看上面的论文。
对于当前正在处理的树,这棵树的路径有两种情况:
经过根结点。
不经过根节点(在子树内)。
对于第二种情况, 我们可以递归求解转化为第一种情况来处理。于是问题变成求解第一种情况了。
这道题在cal统计答案的时候,因为我们在处理以 root 为根节点的子树的答案贡献的时候,求的是在不同子树中的距离小于等于k的点对(第一种情况),但是我们cal出来的是两种情况都包括的,因此需要减去第二种情况,即再cal一遍处理子树。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5 + 10;
typedef long long LL;
struct Edge {
int v, nxt, w;
} edge[N*2];
int n, k, head[N], tot, dep[N], son[N], dis[N], f[N], vis[N], sum, root, ans;
void Add(int u, int v, int w) {
edge[tot] = (Edge) { v, head[u], w }; head[u] = tot++;
edge[tot] = (Edge) { u, head[v], w }; head[v] = tot++;
}
void getroot(int u, int fa) { // 找重心
son[u] = 1; f[u] = 0;
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
if(v == fa || vis[v]) continue;
getroot(v, u);
son[u] += son[v];
f[u] = max(f[u], son[v]); // 最大的子树
}
// 当前的树中除了以u为根的树以外的结点数
// 因为当以u为根的话,除了u为根的树的结点之外的所有结点在一个子树里面
f[u] = max(f[u], sum - son[u]);
// 找一个根节点使得最大的子树最小
if(f[u] < f[root]) root = u;
}
void getdeep(int u, int fa) {
// 处理出dep数组,也是当前点到根节点的距离的数组,dep[0]表示数量
dep[++dep[0]] = dis[u];
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if(vis[v] || v == fa) continue;
dis[v] = dis[u] + w;
getdeep(v, u);
}
}
int cal(int u, int now) {
dep[0] = 0, dis[u] = now;
getdeep(u, 0);
sort(dep + 1, dep + 1 + dep[0]);
int res = 0, l = 1, r = dep[0];
while(l < r) {
// 对于连着l和r的两个端点,之间的所有点都可以使得距离小于等于k
if(dep[l] + dep[r] <= k) res += r - l, l++;
else r--;
} return res;
}
void work(int u) {
// 计算满足dep(i)+dep(j)<=k的数目
ans += cal(u, 0);
vis[u] = 1;
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if(vis[v]) continue;
// 减去满足dep(i)+dep(j)<=k并且i和j在同一个子树的数目(第二种情况)
ans -= cal(v, w);
sum = son[v];
getroot(v, root = 0); // 递归处理子树
// printf("root : %d\n", root);
work(root);
}
}
int main() {
while(~scanf("%d%d", &n, &k), n + k) {
memset(head, -1, sizeof(head)); tot = 0;
memset(vis, 0, sizeof(vis));
for(int i = 1; i < n; i++) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
Add(u, v, w);
}
sum = n, f[0] = INF, ans = 0, root = 0;
getroot(1, 0);
// printf("root : %d\n", root);
work(root);
printf("%d\n", ans);
}
return 0;
}
/*
5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0
*/
POJ 1741:Tree(树上点分治)的更多相关文章
- POJ 1741 Tree 树上点分治
题目链接:http://poj.org/problem?id=1741 题意: 给定一棵包含$n$个点的带边权树,求距离小于等于K的点对数量 题解: 显然,枚举所有点的子树可以获得答案,但是朴素发$O ...
- poj 1741 Tree(点分治)
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15548 Accepted: 5054 Description ...
- POJ 1741 Tree (树分治入门)
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8554 Accepted: 2545 Description ...
- POJ 1741 Tree (点分治)
Tree Time Limit: 1000MS Memory ...
- POJ 1741 Tree 树的分治
原题链接:http://poj.org/problem?id=1741 题意: 给你棵树,询问有多少点对,使得这条路径上的权值和小于K 题解: 就..大约就是树的分治 代码: #include< ...
- POJ 1741 Tree【树分治】
第一次接触树分治,看了论文又照挑战上抄的代码,也就理解到这个层次了.. 以后做题中再慢慢体会学习. 题目链接: http://poj.org/problem?id=1741 题意: 给定树和树边的权重 ...
- poj 1741 Tree (树的分治)
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 30928 Accepted: 10351 Descriptio ...
- POJ 1741 Tree 树的分治(点分治)
题目大意:给出一颗无根树和每条边的权值,求出树上两个点之间距离<=k的点的对数. 思路:树的点分治.利用递归和求树的重心来解决这类问题.由于满足题意的点对一共仅仅有两种: 1.在以该节点的子树中 ...
- POJ 1741 Tree ——(树分治)
思路参考于:http://blog.csdn.net/yang_7_46/article/details/9966455,不再赘述. 复杂度:找树的重心然后分治复杂度为logn,每次对距离数组dep排 ...
- POJ 1741 Tree 求树上路径小于k的点对个数)
POJ 174 ...
随机推荐
- JAVA 加密方法
1. RSA非对称加密 生成密钥对代码: //生成秘钥对 public static KeyPair getKeyPair() throws NoSuchAlgorithmException { Ke ...
- 解决MacOS下readlink: illegal option -- f
时间: 2017.03.21 分类: [操作系统] 评论 Mac下的readlink没有-f参数,诸如screenfetch又会去调用readlink -f,于是每次都会出现: readlink: i ...
- Binding的三种方式
1 Text="{Binding Name}" Name为后台的属性 2 Text="{Binding ElementName=XXX,Path=A.B.C.D….}&q ...
- 龙芯GO!龙芯平台上构建Go语言环境指南
龙芯软件生态系列——龙芯GO!龙芯平台上构建Go语言环境指南2016-07-05 龙芯中科1初识Go语言Go语言是Google公司于2009年正式推出的一款开源的编程语言,是由Robert Gries ...
- 使用 GNU autotools 改造一个软件项目
使用 GNU autotools 改造一个软件项目 及永刚 jungle@soforge.com 2006 年 3 月 24 日 版本:0.3 本文不是一篇规范的教程,而是用一个软件项目作为例子,演 ...
- 高效的DDoS攻击探测与分析工具 – FastNetMon
快速使用Romanysoft LAB的技术实现 HTML 开发Mac OS App,并销售到苹果应用商店中. <HTML开发Mac OS App 视频教程> 土豆网同步更新:http: ...
- IntelliJ IDEA的jsp中内置对象方法无法被解析的解决办法
主要原因是因为缺乏依赖 可以通过添加依赖的方式 导入servlet-api.jar,jsp-api.jar,tomcat-api.jar 这三个jar即可 这三个jar在tomcat的lib目录下有 ...
- Windows系统版本判定那些事儿(有图,各种情况,很清楚)
前言 本文并不是讨论Windows操作系统的版本来历和特点,也不是讨论为什么没有Win9,而是从程序员角度讨论下Windows获取系统版本的方法和遇到的一些问题.在Win8和Win10出来之后,在获取 ...
- 不用 qlv 格式转换成 mp4 - 优雅的下载腾讯视频(mp4 格式)
不用 qlv 格式转换成 mp4 - 优雅的下载腾讯视频(mp4 格式) 问题描述: 朋友说离线腾讯视频是 qlv 格式的,只能使用腾讯视频软件打开.让我帮忙想想办法,能不能将 qlv 格式转换成 m ...
- 「玩转树莓派」树莓派 3B+ 配置无线WiFi
前言 网线不方便还花钱,有自带的无线 WiFi 模块为啥不用. 网络模式 这里我们先介绍两种网络模式,WPA-Personal 与 WPA-Enterprise. WPA-Personal 大多数家庭 ...