一、需求起因

在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。

这个业务场景,主要是解决读数据从Redis缓存,一般都是按照下图的流程来进行业务操作。

读取缓存步骤一般没有什么问题,但是一旦涉及到数据更新:数据库和缓存更新,就容易出现缓存(Redis)和数据库(MySQL)间的数据一致性问题。

不管是先写MySQL数据库,再删除Redis缓存;还是先删除缓存,再写库,都有可能出现数据不一致的情况。举一个例子:

  1. 如果删除了缓存Redis,还没有来得及写库MySQL,另一个线程就来读取,发现缓存为空,则去数据库中读取数据写入缓存,此时缓存中为脏数据。
  2. 如果先写了库,在删除缓存前,写库的线程宕机了,没有删除掉缓存,则也会出现数据不一致情况。

因为写和读是并发的,没法保证顺序,就会出现缓存和数据库的数据不一致的问题。
如来解决?这里给出两个解决方案,先易后难,结合业务和技术代价选择使用。

二、缓存和数据库一致性解决方案

  • 第一种方案:采用延时双删策略

在写库前后都进行redis.del(key)操作,并且设定合理的超时时间。
伪代码如下:

public void write(String key,Object data){ redis.delKey(key);
db.updateData(data); Thread.sleep(500); redis.delKey(key); }

具体的步骤就是:

  1. 先删除缓存;
  2. 再写数据库;
  3. 休眠500毫秒;
  4. 再次删除缓存。

那么,这个500毫秒怎么确定的,具体该休眠多久呢?
需要评估自己的项目的读数据业务逻辑的耗时。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。
当然这种策略还要考虑redis和数据库主从同步的耗时。最后的的写数据的休眠时间:则在读数据业务逻辑的耗时基础上,加几百ms即可。比如:休眠1秒。

设置缓存过期时间
从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案。所有的写操作以数据库为准,只要到达缓存过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存。

该方案的弊端
结合双删策略+缓存超时设置,这样最差的情况就是在超时时间内数据存在不一致,而且又增加了写请求的耗时。

  • 第二种方案:异步更新缓存(基于订阅binlog的同步机制)

技术整体思路:
MySQL binlog增量订阅消费+消息队列+增量数据更新到redis
读Redis:热数据基本都在Redis
写MySQL:增删改都是操作MySQL
更新Redis数据:MySQ的数据操作binlog,来更新到Redis

Redis更新
1)数据操作主要分为两大块:

  • 一个是全量(将全部数据一次写入到redis)
  • 一个是增量(实时更新)

这里说的是增量,指的是mysql的update、insert、delate变更数据。

2)读取binlog后分析 ,利用消息队列,推送更新各台的redis缓存数据。
这样一旦MySQL中产生了新的写入、更新、删除等操作,就可以把binlog相关的消息推送至Redis,Redis再根据binlog中的记录,对Redis进行更新。
其实这种机制,很类似MySQL的主从备份机制,因为MySQL的主备也是通过binlog来实现的数据一致性。

这里可以结合使用canal(阿里的一款开源框架),通过该框架可以对MySQL的binlog进行订阅,而canal正是模仿了mysql的slave数据库的备份请求,使得Redis的数据更新达到了相同的效果。

当然,这里的消息推送工具你也可以采用别的第三方:kafka、rabbitMQ等来实现推送更新Redis。

以上就是Redis和MySQL数据一致性详解。

高并发架构系列:Redis缓存和MySQL数据一致性方案详解的更多相关文章

  1. 【高并发架构】Redis缓存高并发之-主从架构

    Redis主从架构 到目前为止,Redis Cluster 能实现很好的性能,但如果只是缓存几个G的数据,那么单机Redis就足够了,但缓存主要用来读的,单机的QPS有一定的极限,一两万QPS一台应该 ...

  2. Redis缓存和MySQL数据一致性方案(转)

    需求起因 在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节.所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库. 这个业务场景,主要 ...

  3. 高并发架构系列:Redis并发竞争key的解决方案详解

    https://blog.csdn.net/ChenRui_yz/article/details/85096418 https://blog.csdn.net/ChenRui_yz/article/l ...

  4. 高并发架构系列:Redis为什么是单线程、及高并发快的3大原因详解

    Redis的高并发和快速原因 1.redis是基于内存的,内存的读写速度非常快: 2.redis是单线程的,省去了很多上下文切换线程的时间: 3.redis使用多路复用技术,可以处理并发的连接.非阻塞 ...

  5. 高并发架构系列:如何从0到1设计一个类Dubbo的RPC框架

    在过去持续分享的几十期阿里Java面试题中,几乎每次都会问到Dubbo相关问题,比如:“如何从0到1设计一个Dubbo的RPC框架”,这个问题主要考察以下几个方面: 你对RPC框架的底层原理掌握程度. ...

  6. 高并发架构系列:MQ消息队列的12点核心原理总结

    消息队列已经逐渐成为分布式应用场景.内部通信.以及秒杀等高并发业务场景的核心手段,它具有低耦合.可靠投递.广播.流量控制.最终一致性 等一系列功能. 无论是 RabbitMQ.RocketMQ.Act ...

  7. 【高并发架构】Redis特点及构件模型

    数据结构 redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作.如果需要缓存能够支持更复杂的结构和操作, redis 会是不错的选择. redis 主要有以下几种数据 ...

  8. mysql高可用架构之MHA,haproxy实现读写分离详解

    MySQL高可用架构之MHA 一.运维人员需要掌握的MySQL技术: 1.基本SQL语句 2.基本的管理[库表数据的管理    权限的管理] 3.容灾       保证数据不丢失. 二.工作中MySQ ...

  9. 高并发场景系列(一) 利用redis实现分布式事务锁,解决高并发环境下减库存

    原文:http://blog.csdn.net/heyewu4107/article/details/71009712 高并发场景系列(一) 利用redis实现分布式事务锁,解决高并发环境下减库存 问 ...

随机推荐

  1. 漫谈 KVC 与 KVO

    KVC 与 KVO 无疑是 Cocoa 提供给我们的一个非常强大的特性,使用熟练可以让我们的代码变得非常简洁并且易读.但 KVC 与 KVO 提供的 API 又是比较复杂的,绝对超出我们不经深究之前所 ...

  2. 【C#/WPF】调节图像的HSL(色相、饱和度、明亮度)

    原文:[C#/WPF]调节图像的HSL(色相.饱和度.明亮度) 先说概念: HSL是一种描述颜色的方式(其他颜色描述方式还有大家熟悉的RGB值).HSL三个字母分别表示图像的Hue色相.Saturat ...

  3. sql Left right join 多表 注意表的连接顺序

    多表左/右连接,表的连接顺序也可以影响查询速度 左连接时,应该把小表放在前面连接例子:A.B.C三表左连接情况1:A先和B连接,得到100条记录100条记录再和C左连接情况2:A先和C连接,得到50条 ...

  4. Java发展历程

    Java 的发展要追溯到 1991 年,Patrick Naughton(帕特里克·诺顿)和 James Gosling(詹姆斯·高斯林)带领 Sun 公司的工程师打算为有线电视转换盒之类的消费产品设 ...

  5. C# XML 去xmlns:xsd和xmlns:xsi属性

    public static XElement WithoutNamespaces(this XElement element) { if (element == null) return null; ...

  6. 基于EF6的快速开发Web框架——Swift.Net

    Swift.Net This Is A Light-Weight And Fast-Develop .Net Framework. Usage STEP 1 Create Your Entities ...

  7. SignalR的简单实现(一)

    原文:SignalR的简单实现(一) ASP.NET SignalR是ASP.NET开发人员的一个新库,它使您的应用程序添加实时Web功能变得非常简单.什么是"实时网络"功能?能够 ...

  8. 使用VC2005编译真正的静态Qt程序 good

    首先,你应该该知道什么叫静态引用编译.什么叫动态引用编译.我这里只是简单的提提,具体的可以google一下. 动态引用编译,是指相关的库,以dll的形式引用库.动态编译的Exe程序尺寸比较小,因为相关 ...

  9. ORA-13541: system moving window baseline size (691200) greater than retention (432000)

    修改awr生成报告时间间隔和保存时间时报错,由默认的每小时生成,保存8天修改为每半个小时生成一次,保存5天: SQL, retention); , retention); END; * ERROR a ...

  10. AlwaysOn数据同步暂停及回退技术

    随着AlwaysOn技术的流行,关于AlwayOn的问题也越来越多,某企业搭建有三副本的AlwaysOn一套,现想修改主节点上某张表的某个数据,看看会出现什么后果,如果结果正常,就同步到其他节点上:如 ...