久违的写篇博客吧

A. Maximum Square

题目链接:https://codeforces.com/contest/1243/problem/A

题意:

给定n个栅栏,对这n个栅栏进行任意排序,问可形成的最大正方形面积是多少

分析:

水题。

先排个序 , 然后暴力枚举正方形边长就可以了

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define MOD 1000000007
#define pi 3.14159265358979323
#define lrt rt<<1
#define rrt rt<<1|1
#define lson l, m, lrt
#define rson m+1, r, rrt
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
const ll INF (0x3f3f3f3f3f3f3f3fll);
const int inf (0x3f3f3f3f);
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=ch-;isdigit(ch=getchar());res=(res<<)+(res<<)+ch - );flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;}
ll mult(ll a,ll b,ll p){a%=p;b%=p;ll r=,v=a;while(b){if(b&){r+=v;if(r>p)r-=p;}v<<=;if(v>p)v-=p;b>>=;}return r;}
ll quick_pow(ll a,ll b,ll p){ll r=,v=a%p;while(b){if(b&)r=mult(r,v,p);v=mult(v,v,p);b>>=;}return r;}
bool CH(ll a,ll n,ll x,ll t)
{ll r=quick_pow(a,x,n);ll z=r;for(ll i=;i<=t;i++){r=mult(r,r,n);if(r==&&z!=&&z!=n-)return true;z=r;}return r!=;}
bool Miller_Rabin(ll n)
{if(n<)return false;if(n==)return true;if(!(n&))return false;ll x=n-,t=;while(!(x&)){x>>=;t++;}srand(time(NULL));
ll o=;for(ll i=;i<o;i++){ll a=rand()%(n-)+;if(CH(a,n,x,t))return false;}return true;}
int prime[],minprime[];
void euler(int n)
{int c=,i,j;for(i=;i<=n;i++){if(!minprime[i])prime[++c]=i,minprime[i]=i;for(j=;j<=c&&i*prime[j]<=n;j++)
{minprime[i*prime[j]]=prime[j];if(i%prime[j]==)break;}}} const int N = 1e3 + ;
int a[N];
int main(){
ios;
int t;
cin >> t;
while(t -- )
{
int n;
cin >> n;
int a[N];
rep(i , , n - )
{
cin >> a[i];
}
sort(a,a+n);
int len = ;
per(i , n - , )
{
if(a[i] > len){
len ++;
}
else
{
break;
}
}
cout << len << '\n';
}
return ;
}

B1. Character Swap (Easy Version)

题目链接:https://codeforces.com/contest/1243/problem/B1

题意:

给你两个长度为 n 的字符串 S 和 T ,每次操作你可以交换 S 、T上任意两个位置的字符。问是否能只进行一次操作使 S 串 等于 T串。能输出 "Yes" , 不能输出 "No"

分析:

遍历字符串,当 S[i] != T[i] 时,判断从i + 1 到 n是否有s[j] == s[i] && t[j] != s[j],若不存在则说明无法进行一次操作使得两个字符串相等;

若存在则标记cot为0,继续遍历,倘若又一次出现s[i] != t[i],则输出"No".

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define MOD 1000000007
#define pi 3.14159265358979323
#define lrt rt<<1
#define rrt rt<<1|1
#define lson l, m, lrt
#define rson m+1, r, rrt
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
const ll INF (0x3f3f3f3f3f3f3f3fll);
const int inf (0x3f3f3f3f);
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=ch-;isdigit(ch=getchar());res=(res<<)+(res<<)+ch - );flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;}
ll mult(ll a,ll b,ll p){a%=p;b%=p;ll r=,v=a;while(b){if(b&){r+=v;if(r>p)r-=p;}v<<=;if(v>p)v-=p;b>>=;}return r;}
ll quick_pow(ll a,ll b,ll p){ll r=,v=a%p;while(b){if(b&)r=mult(r,v,p);v=mult(v,v,p);b>>=;}return r;}
bool CH(ll a,ll n,ll x,ll t)
{ll r=quick_pow(a,x,n);ll z=r;for(ll i=;i<=t;i++){r=mult(r,r,n);if(r==&&z!=&&z!=n-)return true;z=r;}return r!=;}
bool Miller_Rabin(ll n)
{if(n<)return false;if(n==)return true;if(!(n&))return false;ll x=n-,t=;while(!(x&)){x>>=;t++;}srand(time(NULL));
ll o=;for(ll i=;i<o;i++){ll a=rand()%(n-)+;if(CH(a,n,x,t))return false;}return true;}
int prime[],minprime[];
void euler(int n)
{int c=,i,j;for(i=;i<=n;i++){if(!minprime[i])prime[++c]=i,minprime[i]=i;for(j=;j<=c&&i*prime[j]<=n;j++)
{minprime[i*prime[j]]=prime[j];if(i%prime[j]==)break;}}} const int N = 2e5 + ;
char s[N] , t[N];
int main()
{
ios;
int q;
cin >> q;
while(q --)
{
int n ;
cin >> n;
cin >> s + >> t + ;
int flag = , cot = ;
rep(i , , n)
{
if(!flag) break;
if(s[i] == t[i])
continue;
else
{
if(cot == )
{
cout << "No\n";
flag = ;
break;
}
int have = ;
rep(j , i + , n)
{
if(s[j] == s[i] && t[j] != s[j])
{
swap(t[i] , s[j]);
cot = ;
have = ;
}
}
if(!have)
{
cout << "No\n";
flag = ;
}
}
}
if(flag)
cout <<"Yes\n";
}
return ;
}

B2. Character Swap (Hard Version)

题目链接:https://codeforces.com/contest/1243/problem/B2

题意:

给你两个长度为 n 的字符串 S 和 T ,每次操作你可以交换 S 、T上任意两个位置的字符。

问在 2n 操作次数内能否是 S 等于 T,若可以则输出"Yes"并打印交换方法,若不可以则输出"No"

分析:

其实仔细观察我们会发现只要能够使S串变为T串,那么它的操作次数一定是在2n以内。

然而我们还是要优先选择优质的交换方法。

当 S[i] != T[i] 从后遍历判断是否存在S[j] == S[i] , 若存在则交换 T[i] 和 S[j] , 否则判断是否存在T[j] == S[i] ,若存在则可以先交换S[i] 和 T[i] ,再交换S[i] = T[j],若不存在则输出"No"

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define MOD 1000000007
#define pi 3.14159265358979323
#define lrt rt<<1
#define rrt rt<<1|1
#define lson l, m, lrt
#define rson m+1, r, rrt
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
const ll INF (0x3f3f3f3f3f3f3f3fll);
const int inf (0x3f3f3f3f);
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=ch-;isdigit(ch=getchar());res=(res<<)+(res<<)+ch - );flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;}
ll mult(ll a,ll b,ll p){a%=p;b%=p;ll r=,v=a;while(b){if(b&){r+=v;if(r>p)r-=p;}v<<=;if(v>p)v-=p;b>>=;}return r;}
ll quick_pow(ll a,ll b,ll p){ll r=,v=a%p;while(b){if(b&)r=mult(r,v,p);v=mult(v,v,p);b>>=;}return r;}
bool CH(ll a,ll n,ll x,ll t)
{ll r=quick_pow(a,x,n);ll z=r;for(ll i=;i<=t;i++){r=mult(r,r,n);if(r==&&z!=&&z!=n-)return true;z=r;}return r!=;}
bool Miller_Rabin(ll n)
{if(n<)return false;if(n==)return true;if(!(n&))return false;ll x=n-,t=;while(!(x&)){x>>=;t++;}srand(time(NULL));
ll o=;for(ll i=;i<o;i++){ll a=rand()%(n-)+;if(CH(a,n,x,t))return false;}return true;}
int prime[],minprime[];
void euler(int n)
{int c=,i,j;for(i=;i<=n;i++){if(!minprime[i])prime[++c]=i,minprime[i]=i;for(j=;j<=c&&i*prime[j]<=n;j++)
{minprime[i*prime[j]]=prime[j];if(i%prime[j]==)break;}}} const int N = 2e5 + ;
char s[N] , t[N];
pair<int , int>hehe;
vector<pair<int , int>>vec;
map<char ,int >haha;
int main()
{
ios;
int T;
cin >> T;
while(T -- )
{
haha.clear();
vec.clear();
int n;
cin >> n;
cin >> s + >> t + ; rep(i , , n)
haha[s[i]] ++ , haha[t[i]] ++ ;
int flag = ;
rep(i , , )
{
if(haha[i + 'a'] & )
{
flag = ;
break;
}
}
if(flag)
{
cout << "No" << '\n';
continue;
}
rep(i , , n)
{
if(s[i] == t[i])
continue;
else
{
int falg = ;
rep(j , i + , n)
{
if(s[i] == s[j])
{
hehe.first = j , hehe.second = i;
vec.pb(hehe);
swap(s[j] , t[i]);
falg = ;
break;
}
}
if(!falg)
{
rep(j , i + , n)
{
if(s[i] == t[j])
{
swap(s[i] , t[i]);
hehe.fi = i , hehe.se = i;
vec.pb(hehe);
swap(s[i] , t[j]);
hehe.fi = i , hehe.se = j;
vec.pb(hehe);
break;
}
}
}
}
}
int len = vec.size();
if(len >= * n)
{
cout << "No" << '\n';
continue;
}
cout << "Yes" << '\n';
cout << vec.size() << '\n';
rep(i , , vec.size() - )
cout << vec[i].fi << " " << vec[i].se << '\n';
}
return ;
}

C. Tile Painting

题目链接:https://codeforces.com/contest/1243/problem/C

题意:

给你 n 个方格 , 第 i 个位置的倍数的颜色需要和 第 i 个位置的颜色相同,问你最多可以用多少种颜色来填充

分析:

找找规律我们会发现它是有循环节的,而循环节就是n / lcm = 所有因子的gcd

 #include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define MOD 1000000007
#define pi 3.14159265358979323
#define lrt rt<<1
#define rrt rt<<1|1
#define lson l, m, lrt
#define rson m+1, r, rrt
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
const ll INF (0x3f3f3f3f3f3f3f3fll);
const int inf (0x3f3f3f3f);
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=ch-;isdigit(ch=getchar());res=(res<<)+(res<<)+ch - );flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;}
ll mult(ll a,ll b,ll p){a%=p;b%=p;ll r=,v=a;while(b){if(b&){r+=v;if(r>p)r-=p;}v<<=;if(v>p)v-=p;b>>=;}return r;}
ll quick_pow(ll a,ll b,ll p){ll r=,v=a%p;while(b){if(b&)r=mult(r,v,p);v=mult(v,v,p);b>>=;}return r;}
bool CH(ll a,ll n,ll x,ll t)
{ll r=quick_pow(a,x,n);ll z=r;for(ll i=;i<=t;i++){r=mult(r,r,n);if(r==&&z!=&&z!=n-)return true;z=r;}return r!=;}
bool Miller_Rabin(ll n)
{if(n<)return false;if(n==)return true;if(!(n&))return false;ll x=n-,t=;while(!(x&)){x>>=;t++;}srand(time(NULL));
ll o=;for(ll i=;i<o;i++){ll a=rand()%(n-)+;if(CH(a,n,x,t))return false;}return true;}
int prime[],minprime[];
void euler(int n)
{int c=,i,j;for(i=;i<=n;i++){if(!minprime[i])prime[++c]=i,minprime[i]=i;for(j=;j<=c&&i*prime[j]<=n;j++)
{minprime[i*prime[j]]=prime[j];if(i%prime[j]==)break;}}} const int N = 2e5 + ;
vector<ll>haha;
void init(ll n)
{
ll i ;
for(i = ; i * i < n ; i ++)
{
if(n % i == )
haha.pb(i) , haha.pb(n / i);
}
if(i * i == n)
haha.pb(i);
}
int main()
{
ios;
haha.clear();
ll n;
cin >> n;
init(n);
haha.pb(n);
ll ans = haha[];
rep(i , , haha.size() - )
ans = gcd(ans , haha[i]);
cout << ans << '\n';
return ;
}

D. 0-1 MST

题目链接:https://codeforces.com/contest/1243/problem/D

题意:

给你一张包含 n 个点的完全图,其中有m条边的权值为1,其它的为0。现要求你求出最小生成树的权值

分析:

先将 n 个点存入 set<int> S(表示该点还未在任何连通块里),并用vis进行标记

再对每个点开个set<int>G用来存图

遍历每个点 , 若 vis[i] = 1 则将 i 从集合S中删除并以 i 为起点进行 bfs 寻找连通块 , 同时连通块个数 cnt ++。

bfs 过程中遍历S , 若 G[i].count(*it) == 1 , 则说明两点没有连通 , 若为 0 则说明两点有连通。若连通则将其从S中erase、vis标记为1,并加入队列进行下一轮bfs

最后输出 cnt - 1即可

#include<bits/stdc++.h>
#define ios std::ios::sync_with_stdio(false)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define pd(n) printf("%d\n", (n))
#define pdd(n,m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n,m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define mm(a,n) memset(a, n, sizeof(a))
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define ll long long
#define MOD 1000000007
#define pi 3.14159265358979323
#define lrt rt<<1
#define rrt rt<<1|1
#define lson l, m, lrt
#define rson m+1, r, rrt
#define debug(x) cout << #x << ": " << x << endl
#define debug2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl;
#define debug3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl;
#define debug4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl;
using namespace std;
const ll INF (0x3f3f3f3f3f3f3f3fll);
const int inf (0x3f3f3f3f);
template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
for(res=ch-;isdigit(ch=getchar());res=(res<<)+(res<<)+ch - );flag&&(res=-res);}
template<typename T>void Out(T x){if(x<)putchar('-'),x=-x;if(x>)Out(x/);putchar(x%+'');}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll pow_mod(ll x,ll n,ll mod){ll res=;while(n){if(n&)res=res*x%mod;x=x*x%mod;n>>=;}return res;}
ll fact_pow(ll n,ll p){ll res=;while(n){n/=p;res+=n;}return res;}
ll mult(ll a,ll b,ll p){a%=p;b%=p;ll r=,v=a;while(b){if(b&){r+=v;if(r>p)r-=p;}v<<=;if(v>p)v-=p;b>>=;}return r;}
ll quick_pow(ll a,ll b,ll p){ll r=,v=a%p;while(b){if(b&)r=mult(r,v,p);v=mult(v,v,p);b>>=;}return r;}
bool CH(ll a,ll n,ll x,ll t)
{ll r=quick_pow(a,x,n);ll z=r;for(ll i=;i<=t;i++){r=mult(r,r,n);if(r==&&z!=&&z!=n-)return true;z=r;}return r!=;}
bool Miller_Rabin(ll n)
{if(n<)return false;if(n==)return true;if(!(n&))return false;ll x=n-,t=;while(!(x&)){x>>=;t++;}srand(time(NULL));
ll o=;for(ll i=;i<o;i++){ll a=rand()%(n-)+;if(CH(a,n,x,t))return false;}return true;}
int prime[],minprime[];
void euler(int n)
{int c=,i,j;for(i=;i<=n;i++){if(!minprime[i])prime[++c]=i,minprime[i]=i;for(j=;j<=c&&i*prime[j]<=n;j++)
{minprime[i*prime[j]]=prime[j];if(i%prime[j]==)break;}}} const int N = 2e5 + ;
set<int>G[N];
set<int>s;
set<int>::iterator it;
int n , m;
int vis[N];
void bfs(int x)
{
queue<int>q;
q.push(x);
s.erase(x);
vis[x] = ;
while(!q.empty())
{
int k = q.front();
q.pop();
for(it = s.begin() ; it != s.end() ;)
{
int ha = *it ++;
if(G[k].count(ha) == )
{
vis[ha] = ;
q.push(ha);
s.erase(ha);
}
}
}
}
int main()
{
ios;
cin >> n >> m;
rep(i , , n)
s.insert(i);
rep(i , , m)
{
int x , y;
cin >> x >> y;
G[x].insert(y);
G[y].insert(x);
}
int ans = ;
rep(i , , n)
{
if(!vis[i])
{
ans ++;
bfs(i);
}
}
cout << ans - << '\n';
return ;
}

Codeforces Round #599 (Div. 2)的更多相关文章

  1. Codeforces Round #599 (Div. 2) D. 0-1 MST(bfs+set)

    Codeforces Round #599 (Div. 2) D. 0-1 MST Description Ujan has a lot of useless stuff in his drawers ...

  2. Codeforces Round #599 (Div. 2)D 边很多的只有0和1的MST

    题:https://codeforces.com/contest/1243/problem/D 分析:找全部可以用边权为0的点连起来的全部块 然后这些块之间相连肯定得通过边权为1的边进行连接 所以答案 ...

  3. Codeforces Round #599 (Div. 2) E. Sum Balance

    这题写起来真的有点麻烦,按照官方题解的写法 先建图,然后求强连通分量,然后判断掉不符合条件的换 最后做dp转移即可 虽然看起来复杂度很高,但是n只有15,所以问题不大 #include <ios ...

  4. Codeforces Round #599 (Div. 1) C. Sum Balance 图论 dp

    C. Sum Balance Ujan has a lot of numbers in his boxes. He likes order and balance, so he decided to ...

  5. Codeforces Round #599 (Div. 1) B. 0-1 MST 图论

    D. 0-1 MST Ujan has a lot of useless stuff in his drawers, a considerable part of which are his math ...

  6. Codeforces Round #599 (Div. 1) A. Tile Painting 数论

    C. Tile Painting Ujan has been lazy lately, but now has decided to bring his yard to good shape. Fir ...

  7. Codeforces Round #599 (Div. 2) B2. Character Swap (Hard Version) 构造

    B2. Character Swap (Hard Version) This problem is different from the easy version. In this version U ...

  8. Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version) 水题

    B1. Character Swap (Easy Version) This problem is different from the hard version. In this version U ...

  9. Codeforces Round #599 (Div. 2) A. Maximum Square 水题

    A. Maximum Square Ujan decided to make a new wooden roof for the house. He has

随机推荐

  1. iOS核心动画高级技巧 - 3

    7. 隐式动画 隐式动画 按照我的意思去做,而不是我说的. -- 埃德娜,辛普森 我们在第一部分讨论了Core Animation除了动画之外可以做到的任何事情.但是动画是Core Animation ...

  2. img标签不能直接作为body的子元素

    前几天在一本教材上看到关于HTML标签嵌套规则一节的时候,看到这么一句话,“把图像作为body元素的子元素直接插入到页面中,这样是不妥的,一是结构嵌套有误,二是图像控制不方便.”后面还给了一段代码演示 ...

  3. 数据类型转换&运算符

    基本数据类型注意事项 整型类型:long>int>short>byte java默认类型为int型 long a = 123 表示将int类型的数值赋给更大范围的long类型,当数据 ...

  4. 2-SAT习题讲解

    2-SAT习题讲解 讲在前面:下述例题不是按照难度顺序的,而且基本就只会讲解建图的过程.下面讲解中$A'$为$A$的反向状态. 一.bzoj习题 例一:$bzoj2199 奶牛议会$ 首先我们考虑本题 ...

  5. Java学习笔记 线程池使用及详解

    有点笨,参考了好几篇大佬们写的文章才整理出来的笔记.... 字面意思上解释,线程池就是装有线程的池,我们可以把要执行的多线程交给线程池来处理,和连接池的概念一样,通过维护一定数量的线程池来达到多个线程 ...

  6. react 组件间通信,父子间通信

    一.父组件传值给子组件 父组件向下传值是使用了props属性,在父组件定义的子组件上定义传给子组件的名字和值,然后在子组件通过this.props.xxx调用就可以了. 二.子组件传值给父组件 子组件 ...

  7. 面试官:CPU百分百!给你一分钟,怎么排查?有几种方法?

    Part0 遇到了故障怎么办? 在生产上,我们会遇到各种各样的故障,遇到了故障怎么办? 不要慌,只有冷静才是解决故障的利器. 下面以一个例子为例,在生产中碰到了CPU 100%的问题怎么办? 在生产中 ...

  8. 闲来无事写了一套 Jenkins 主题样式:刀锋

    背景 Jenkins 的前端 CSS 样式坚挺了这么多年已经觉得腻的不行了,于是想换个风格缓解一下视觉疲劳,便有了这个项目.由于本人不是前端,所以很多只是随便改改,有些复杂的需求也实现不了,但是总的来 ...

  9. 记一个bootloader的cache问题

    问题背景 最近往一个armv7板子的bootloader中移植了解压算法,移植本身还比较顺利,但移植完了发现,功能是正常的,但效率大打折扣.解压同样的数据,耗时大约是uboot的10倍. 初步定位 从 ...

  10. win上找到host文件的方法

    在运行的位置输入 C:\WINDOWS\system32\drivers\etc