版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

一、广度优先搜索介绍

广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

二、广度优先搜索图解

1.无向图的广度优先搜索

下面以"无向图"为例,来对广度优先搜索进行演示。还是以上面的图G1为例进行说明。

  1. 第1步:访问A。
  2. 第2步:依次访问C,D,F。 在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。
  3. 第3步:依次访问B,G。在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。
  4. 第4步:访问E。 在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E

2.有向图的广度优先搜索

下面以"有向图"为例,来对广度优先搜索进行演示。还是以上面的图G2为例进行说明。

  1. 第1步:访问A。
  2. 第2步:访问B。
  3. 第3步:依次访问C,E,F。 在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。
  4. 第4步:依次访问D,G。在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G

三、代码实现

核心代码:

/**
* 图的广度优先遍历算法
*/
private void boardFirstSearch(int i) {
LinkedList<Integer> queue = new LinkedList<>();
System.out.println("访问到了:" + i + "顶点");
isVisited[i] = true;
queue.add(i); while (queue.size() > 0) {
int w = queue.removeFirst().intValue();
int n = getFirstNeighbor(w);
while (n != -1) {
if (!isVisited[n]) {
System.out.println("访问到了:" + n + "顶点");
isVisited[n] = true;
queue.add(n);
}
n = getNextNeighbor(w, n);
}
}
}

四、图的DFS和BFS完整代码

import java.util.LinkedList;

public class Graph {

    private int vertexSize; // 顶点数量
private int[] vertexs; // 顶点数组
private int[][] matrix; // 包含所有顶点的数组
// 路径权重
// 0意味着顶点自己到自己,无意义
// MAX_WEIGHT也意味着到目的顶点不可达
private static final int MAX_WEIGHT = 1000;
private boolean[] isVisited; // 某顶点是否被访问过 public Graph(int vertextSize) {
this.vertexSize = vertextSize;
matrix = new int[vertextSize][vertextSize];
vertexs = new int[vertextSize];
for (int i = 0; i < vertextSize; i++) {
vertexs[i] = i;
}
isVisited = new boolean[vertextSize];
} /**
* 获取指定顶点的第一个邻接点
*
* @param index
* 指定邻接点
* @return
*/
private int getFirstNeighbor(int index) {
for (int i = 0; i < vertexSize; i++) {
if (matrix[index][i] < MAX_WEIGHT && matrix[index][i] > 0) {
return i;
}
}
return -1;
} /**
* 获取指定顶点的下一个邻接点
*
* @param v
* 指定的顶点
* @param index
* 从哪个邻接点开始
* @return
*/
private int getNextNeighbor(int v, int index) {
for (int i = index+1; i < vertexSize; i++) {
if (matrix[v][i] < MAX_WEIGHT && matrix[v][i] > 0) {
return i;
}
}
return -1;
} /**
* 图的深度优先遍历算法
*/
private void depthFirstSearch(int i) {
isVisited[i] = true;
int w = getFirstNeighbor(i);
while (w != -1) {
if (!isVisited[w]) {
// 需要遍历该顶点
System.out.println("访问到了:" + w + "顶点");
depthFirstSearch(w); // 进行深度遍历
}
w = getNextNeighbor(i, w); // 第一个相对于w的邻接点
}
} /**
* 图的广度优先遍历算法
*/
private void boardFirstSearch(int i) {
LinkedList<Integer> queue = new LinkedList<>();
System.out.println("访问到了:" + i + "顶点");
isVisited[i] = true;
queue.add(i); while (queue.size() > 0) {
int w = queue.removeFirst().intValue();
int n = getFirstNeighbor(w);
while (n != -1) {
if (!isVisited[n]) {
System.out.println("访问到了:" + n + "顶点");
isVisited[n] = true;
queue.add(n);
}
n = getNextNeighbor(w, n);
}
}
} public static void main(String[] args) {
Graph graph = new Graph(9); // 顶点的矩阵设置
int[] a1 = new int[] { 0, 10, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT };
int[] a2 = new int[] { 10, 0, 18, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, MAX_WEIGHT, 12 };
int[] a3 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 0, 22, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 8 };
int[] a4 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, 24, 16, 21 };
//int[] a4 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, MAX_WEIGHT, 16, 21 };
int[] a5 = new int[] { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 20, 0, 26, MAX_WEIGHT, 7, MAX_WEIGHT };
int[] a6 = new int[] { 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 26, 0, 17, MAX_WEIGHT, MAX_WEIGHT };
int[] a7 = new int[] { MAX_WEIGHT, 16, MAX_WEIGHT, 24, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
//int[] a7 = new int[] { MAX_WEIGHT, 16, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
int[] a8 = new int[] { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, 7, MAX_WEIGHT, 19, 0, MAX_WEIGHT };
int[] a9 = new int[] { MAX_WEIGHT, 12, 8, 21, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 0 }; graph.matrix[0] = a1;
graph.matrix[1] = a2;
graph.matrix[2] = a3;
graph.matrix[3] = a4;
graph.matrix[4] = a5;
graph.matrix[5] = a6;
graph.matrix[6] = a7;
graph.matrix[7] = a8;
graph.matrix[8] = a9; graph.depthFirstSearch(0);
//graph.boardFirstSearch(0);
} }

五、总结

  • 广度优先遍历表示把每一层都遍历完才能遍历下一层
  • 我们来思考:假设v0有3个邻接点,v1 v2 v3
    • 我们访问v0后,然后访问v1 v2 v3。完毕后我们要从v1开始遍历它的邻接点,接着从v2开始遍历它的邻接点,最后是从v3开始遍历它的邻接点。
    • 也就是说,3个邻接点访问完后。我们要回过头逐个遍历它们的邻接点。这一点我觉得要用个容器把它们顺序存储下来。然后每次从容器首部取出一个顶点开始遍历。这里我想到LinkedList,因为它适合增删。而且这里不需要遍历集合。
  • 我们可以把第一个顶点放进集合,然后while(!queue.isEmpty())while(queue.size() > 0)都行。开始循环。

    • 然后取出并删除集合中第一个顶点元素的第一个邻接点。对这个顶点进行访问,

      • 如果该顶点未访问过,就访问!然后将该顶点放入集合。
      • 如果该顶点已访问过,就找该顶点的下一个邻接点。

我的微信公众号:架构真经(id:gentoo666),分享Java干货,高并发编程,热门技术教程,微服务及分布式技术,架构设计,区块链技术,人工智能,大数据,Java面试题,以及前沿热门资讯等。每日更新哦!

参考资料:

  1. https://blog.csdn.net/Strive_Y/article/details/81810012
  2. https://www.jianshu.com/p/23b55db1adc0

程序员的算法课(18)-常用的图算法:广度优先(BFS)的更多相关文章

  1. 程序员的算法课(19)-常用的图算法:最短路径(Shortest Path)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  2. 程序员的算法课(20)-常用的图算法:最小生成树(MST)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  3. 程序员的算法课(17)-常用的图算法:深度优先(DFS)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  4. 程序员的算法课(3)-递归(recursion)算法

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  5. 程序员的算法课(16)-B+树在数据库索引中的作用

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  6. 程序员的算法课(14)-Hash算法-对海量url判重

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  7. 程序员的算法课(11)-KMP算法

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  8. 程序员的算法课(6)-最长公共子序列(LCS)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  9. 给c++程序员的一份礼物——常用工具集

    给c++程序员的一份礼物——常用工具集 [声明]如需复制.传播,请附上本声明,谢谢.原文出处:http://morningspace.51.net/,moyingzz@etang.com 所谓&quo ...

随机推荐

  1. Android H5混合开发(5):封装Cordova View, 让Fragment、弹框、Activity自由使用Cordova

    近期,有同事咨询如何在Fragment中使用Cordova,看了下Cordova源码,官方并没有提供包含Cordova Webview的Fragment,以供我们继承. 上网查询了一下,也有几篇文章讲 ...

  2. CVE-2019-13272Linuxkernel权限许可和访问控制问题漏洞

    漏洞简介: Linuxkernel是美国Linux基金会发布的开源操作系统Linux所使用的内核. Linuxkernel5.1.17之前版本中存在安全漏洞,该漏洞源于kernel/ptrace.c文 ...

  3. textarea如何实现高度自适应(一)

    转自轩枫阁 - http://www.xuanfengge.com/textarea-on-how-to-achieve-a-high-degree-of-adaptive.html 方法一:div模 ...

  4. 学习笔记55_Nhibernate

    另一种ORM框架 1.添加各种dll 2.添加配置信息,根据文档直接复制粘贴.config //一般下载Nhibernate-3.0.0.Alpha2-bin包,会有Configuration_Tem ...

  5. 深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)

    1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个 ...

  6. csp模拟69

    考试一眼看出$T3$原题,但是没做过,心态爆炸. 然后去看$T1$,迷之认为它是矩阵快速幂?推了一个小时,发现在转移过程中方案数并不均匀分布,然后就挂了. 决定先去看T3,只会$O(n\sqrt{n} ...

  7. 搜索框(SearchView)用法

    SearchView是Android原生的搜索框控件,它提供了一个用户界面,可以让用户在文本框内输入文字,并允许通过看监听器监控用户输入,当用户输入完成后提交搜索时,也可通过监听器执行实际的搜索. S ...

  8. PHP array_multisort实现二维数组排序

    PHP array_multisort实现二维数组排序 参数中的数组被当成一个表的列并以行来进行排序 - 这类似 SQL 的 ORDER BY 子句的功能.第一个数组是要排序的主要数组.数组中的行(值 ...

  9. 实现支持多用户在线的FTP程序(C/S)

    1. 需求 1. 用户加密认证 2. 允许多用户登录 3. 每个用户都有自己的家目录,且只能访问自己的家目录 4. 对用户进行磁盘分配,每一个用户的可用空间可以自己设置 5. 允许用户在ftp ser ...

  10. 使用Bootstrap制作简单的旅游主页

    页面效果 代码: 需要导入bootstrapt文件,解压至项目中. 下载地址:https://v3.bootcss.com/getting-started/#download <!DOCTYPE ...