利用keras进行手写数字识别模型训练,并输出训练准确度
from keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
#train_images 和 train_labels 是训练集
train_images.shape#第一个数字表示图片张数,后面表示图片尺寸,和之前我在opencv上遇到的有所不同
#opencv上是前面表示图片尺寸,后面表示图片的通道数量
输出:
(60000, 28, 28)
len(train_labels)
输出:
60000
from keras import models
from keras import layers
下面开始构造神经网络:
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))#果然shape是28*28!!!
network.add(layers.Dense(10, activation='softmax'))
预编译:
network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
开始训练模型:
network.fit(train_images, train_labels, epochs=5, batch_size=128)
输出:
Epoch 1/5
60000/60000 [==============================] - 7s 111us/step - loss: 0.2523 - acc: 0.9274
Epoch 2/5
60000/60000 [==============================] - 7s 111us/step - loss: 0.1029 - acc: 0.9689 5s - loss: 0.1212
Epoch 3/5
60000/60000 [==============================] - 7s 116us/step - loss: 0.0677 - acc: 0.9795
Epoch 4/5
60000/60000 [==============================] - 8s 130us/step - loss: 0.0504 - acc: 0.9848
Epoch 5/5
60000/60000 [==============================] - 7s 119us/step - loss: 0.0374 - acc: 0.9886 2s - loss: 0.0370 -
Out[12]:
<keras.callbacks.History at 0x1c6e30c1828>
因此可得识别准确度为98%
进行测试集的验证:
test_loss, test_acc = network.evaluate(test_images, test_labels)
输出准确度:
print('识别准确度为:', test_acc)
识别准确度为:
0.9807
利用keras进行手写数字识别模型训练,并输出训练准确度的更多相关文章
- 使用L2正则化和平均滑动模型的LeNet-5MNIST手写数字识别模型
使用L2正则化和平均滑动模型的LeNet-5MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: T ...
- 持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型
持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tens ...
- Keras cnn 手写数字识别示例
#基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...
- Keras mlp 手写数字识别示例
#基于mnist数据集的手写数字识别 #构造了三层全连接层组成的多层感知机,最后一层为输出层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: import keras from ...
- 【百度飞桨】手写数字识别模型部署Paddle Inference
从完成一个简单的『手写数字识别任务』开始,快速了解飞桨框架 API 的使用方法. 模型开发 『手写数字识别』是深度学习里的 Hello World 任务,用于对 0 ~ 9 的十类数字进行分类,即输入 ...
- 【转】机器学习教程 十四-利用tensorflow做手写数字识别
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
- 【问题解决方案】Keras手写数字识别-ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接
参考:台大李宏毅老师视频课程-Keras-Demo 在载入数据阶段报错: ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接 Google之 ...
- 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...
随机推荐
- Yii2 框架跑脚本时内存泄漏问题分析
现象 在跑 edu_ocr_img 表的归档时,每跑几万个数据,都会报一次内存耗尽 PHP Fatal error: Allowed memory size of 134217728 bytesex ...
- UiPath Platform注册 登录 及 访问 Orchestrator
相关步骤: 1.https://platform.uipath.com/portal_/cloudrpa 注册 及 登录 2. Login后 通过Services 连接 访问 UiPath Orche ...
- 65-如何部署 Calico 网络?
Calico 是一个纯三层的虚拟网络方案,Calico 为每个容器分配一个 IP,每个 host 都是 router,把不同 host 的容器连接起来.与 VxLAN 不同的是,Calico 不对数据 ...
- Git submodule update 命令执行
git submodule update操作可能导致执行.gitmodules文件中定义的任意shell命令. 受影响的产品 Git版本2.20.0至2.24.0 修复版本 Git v2.24.1,v ...
- 对token机制的学习和分析
token,中文意思为令牌,是用户登录后会返回的一个字符串,里面包括用户信息.登录时间等,但是是加密过的密文,其加解密方式由后端决定. 在登录之后的接口请求中,前端需在请求中统一加上token,从而识 ...
- IT兄弟连 HTML5教程 CSS3属性特效 动画-animation
CSS3属性中有关于制作动画的三个属性:Transform,Transition,Animation.前面已经介绍过Transform和Transition了,这里我们来学习Animation动画.通 ...
- 【BZOJ 2138】stone
Problem Description 话说 \(Nan\) 在海边等人,预计还要等上 \(M\) 分钟.为了打发时间,他玩起了石子. \(Nan\) 搬来了 \(N\) 堆石子,编号为 \(1\) ...
- Mybatis的PageHelper分页插件的PageInfo的属性参数,成员变量的解释,以及页面模板
作者:个人微信公众号:程序猿的月光宝盒 //当前页 private int pageNum; //每页的数量 private int pageSize; //当前页的数量 private int si ...
- ES-索引管理
参考: https://es.xiaoleilu.com/070_Index_Mgmt/00_Intro.html 创建索引 PUT /new_index 创建更多详细设置的索引: 删除索引 DELT ...
- Elasticsearch核心技术与实战-学习笔记
学习资源: Elasticsearch中文社区日报https://elasticsearch.cn/article/ Elasticsearch 官网 https://www.elastic.co/ ...