【机器学习】PCA
PCA
PCA 就是找出数据最主要的方面,用数据里最主要的方面来代替原始数据。
PCA 是最重要的降维方法之一,在数据压缩、消除冗余和数据噪音消除等领域都有广泛的应用。
1. PCA最大可分性的思想
最大可分性: 样本点在超平面上的投影尽可能的分开
2. 基变换(线性变换)
欲获得原始数据新的表示空间,最简单方法是对原始数据进行基变换(线性变换)。
3. 方差
如何选择一个方向或者基才是最优的?基于PCA最大可分思想,我们要找的方向是降维后损失最小,可以理解为投影后的数据尽可能分得开,而分散程度可以用数学上的方差来表示,因为方差越大数据也就越分散。
4. 协方差
在高维变换中,我们希望基变换后选择的各个方向(或者基)是不相关的,这样才能表示更多的信息。数学上使用协方差表示相关性:
\]
如果 \(Cov(a,b)=0\) ,则表示两个字段完全独立,这也是我们的优化目标。
5. 协方差矩阵
我们想达到的目标(\(Cov(a,b)=0\)) 与 字段内方差 及 字段间协方差 有着密切的关系。假设只有 \(a, b\) 两个字段,按行组成 \(X\) ,求取协方差矩阵:
可见,协方差矩阵是一个对称的矩阵,对角线是各个维度的方差(字段内方差),而其它元素是字段间协方差,两者被统一到了一个矩阵之中。
6. 协方差矩阵对角化
我们的目标是使 \(Cov(a,b)=0\) ,由协方差矩阵可知我们的优化目标 \(C=\frac{1}{m}XX^T\) 等价于协方差矩阵对角化(除对角线以外的其它元素都为0,并且对角线将元素按照大小从上到下排列)。
推导:
7. PCA算法流程
输入: \(n\) 维样本集 \(X = (x_1, x_2, ... ,X_m)\),要降维到的维数 \(n^{'}\)
输出: 降维后的样本集 \(Y\)
算法:
1)对所有样本进行中心化 \(x_i = x_i -\frac{1}{m}\sum_{j=1}^mx_j\)
2)计算样本的协方差矩阵 \(C=\frac{1}{m}XX^T\)
3)求出协方差矩阵的特征值以及对应的特征向量
4)将特征向量按对应特征值大小从上到下排列成矩阵,取前 \(K\) 行组成矩阵 \(P\)
5)\(Y=PX\) 即为原始样本降维到 \(K\) 维后的数据矩阵
代码:
"""
这里假设原始数据集为矩阵 dataMat,其中每一行代表一个样本,每一列代表同一个特征(与上面的介绍稍有不同,上 面是每一列代表一个样本,每一行代表同一个特征)。
"""
import numpy as np
################################
# (1)零均值化
################################
def zeroMean(dataMat):
meanVal=np.mean(dataMat,axis=0) #按列求均值(axis=0),即求各个特征的均值
newData=dataMat-meanVal
return newData,meanVal # newData是零均值化后的数据,meanVal是每个特征的均值
################################
# (2)求协方差矩阵
# 若rowvar=0,说明传入的数据一行代表一个样本;
# 若非0,说明传入的数据一列代表一个样本。
################################
newData,meanVal=zeroMean(dataMat)
covMat=np.cov(newData,rowvar=0)
################################
# (3)求特征值和特征矩阵
# eigVals存放特征值,行向量
# eigVects存放特征向量,每一列带别一个特征向量
# 特征值和特征向量是一一对应的
################################
eigVals,eigVects=np.linalg.eig(np.mat(covMat))
################################
# (4)保留比较大的前n个特征向量
# 第三步得到了特征值向量eigVals,假设里面有m个特征值,我们可以对其排序,排在前面的n个特征值所对应的特征 # 向量就是我们要保留的,它们组成了新的特征空间的一组基n_eigVect
################################
eigValIndice=np.argsort(eigVals) #对特征值从小到大排序
n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标,首先argsort对特征值是从小到大排序的,那么最大的n个特征值就排在后面,所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标(python里面,list[a:b:c]代表从下标a开始到b,步长为c)
n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量
################################
# (5)获取降维后的数据
# 将零均值化后的数据乘以n_eigVect就可以得到降维后的数据
################################
lowDDataMat=newData*n_eigVect #低维特征空间的数据
reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据
8. PCA算法总结
优点:
1) 仅仅依靠方差衡量信息量,不受数据集以外的因素影响
2)各主成分之间相互正交,可消除原始数据成分间的相互影响的因素
3)计算方法简单,主要运用特征值分解
缺点:
1)主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强
2)方差小的主成分也有可能含有对样本差异的重要信息,由于降维丢弃可能会对后续数据处理有影响
【机器学习】PCA的更多相关文章
- [机器学习]-PCA数据降维:从代码到原理的深入解析
&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Prin ...
- 机器学习--PCA降维和Lasso算法
1.PCA降维 降维有什么作用呢?数据在低维下更容易处理.更容易使用:相关特征,特别是重要特征更能在数据中明确的显示出来:如果只有两维或者三维的话,更便于可视化展示:去除数据噪声降低算法开销 常见的降 ...
- 机器学习--PCA算法代码实现(基于Sklearn的PCA代码实现)
一.基于Sklearn的PCA代码实现 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets ...
- [机器学习 ]PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做
PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解) ...
- 机器学习(4)——PCA与梯度上升法
主成分分析(Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化.去噪 通过映射,我们可以 ...
- 131.008 Unsupervised Learning - Principle component Analysis |PCA | 非监督学习 - 主成分分析
@(131 - Machine Learning | 机器学习) PCA是一种特征选择方法,可将一组相关变量转变成一组基础正交变量 25 PCA的回顾和定义 Demo: when to use PCA ...
- PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...
- SIGAI深度学习第四集 深度学习简介
讲授机器学习面临的挑战.人工特征的局限性.为什么选择神经网络.深度学习的诞生和发展.典型的网络结构.深度学习在机器视觉.语音识别.自然语言处理.推荐系统中的应用 大纲: 机器学习面临的挑战 特征工程的 ...
- 机器学习笔记----四大降维方法之PCA(内带python及matlab实现)
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效 ...
- 《机器学习实战》学习笔记——第13章 PCA
1. 降维技术 1.1 降维的必要性 1. 多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯.2. 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负 ...
随机推荐
- 用 Python 带你看各国 GDP 变迁
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 周萝卜 源自:萝卜大杂烩 PS:如有需要Python学习资料的小伙伴 ...
- hibernate关联关系(一对多)
什么是关联(association) 关联指的是类之间的引用关系.如果类A与类B关联,那么被引用的类B将被定义为类A的属性. 案例:如何建立客户和订单一对多双向关联 先不建立客户和订单的关联关系,定义 ...
- centos下搭建python双版本环境
目录 centos下搭建python双版本环境 一.安装python3 1.理清自带python位置 2.更新用于下载编译python3的相关包 3.安装pip 4.用pip安装wget 5.用wge ...
- pycharm2019.2一个奇怪的bugger,执行后输出内容被莫名处理
2019-08-20 07:45:07 python爬虫是一直来大家都用的多的,我也是常常用到. requests做请求方便的很,但是今天却遇到requests的bug.text内容不可信. pych ...
- JDK8日常开发系列:Consumer详解
java.util.function中 Function, Supplier, Consumer, Predicate和其他函数式接口广泛用在支持lambda表达式的API中.这些接口有一个抽象方法, ...
- Saltstack_使用指南08_远程执行-返回程序
1. 主机规划 salt 版本 [root@salt100 ~]# salt --version salt (Oxygen) [root@salt100 ~]# salt-minion --versi ...
- linux工作队列 - workqueue总览【转】
转自:https://blog.csdn.net/cc289123557/article/details/52551176 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载 ...
- Linux:目录的查找
搜索文件与目录 find [查找范围] [查找条件表达式] 常用的选项 -name 按名称查找,允许使用通配符 -type 按文件类型查找 文件类型包括: 普通文件 f 目录 d 块设备文件 b 字符 ...
- STL关联容器的基本操作
关联容器 map,set map map是一种关联式容器包含 键/值 key/value 相当于python中的字典不允许有重复的keymap 无重复,有序 Map是STL的一个关联容器,它提供一对一 ...
- python 2.7 操作mysql数据库 实例
create table msg(id int primary key auto_increment,title varchar(20),name varchar(60),content varcha ...