• 概述
  • 透视投影
  • 正交投影

概述

计算机显示器是一个2D平面。OpenGL渲染的3D场景必须以2D图像方式投影到计算机屏幕上。GL_PROJECTION矩阵用于该投影变换。首先,它将所有定点数据从观察坐标转换到裁减坐标。接着,这些裁减坐标通过除以w分量的方式转换到归一化设备坐标(NDC)。

因此,我们需要记住一点:裁减变换(视锥剔除)与NDC变换都保存在GL_PROJECTION矩阵中。下述章节描述如何从6个限定参数(左、右、下、上、近平面、远平面)构建投影矩阵。

注意,视锥剔除(裁减)在裁减坐标上执行,并且在除以wc之前。裁减坐标xc、yc、zc会与wc做比较检测。如果任一坐标小于-wc或大于wc,则该顶点将会抛弃。

接着,OpenGL重新构建那些裁减掉的多边形的边。

 
被视锥裁减的三角形

透视投影

 
OpenGL透视视锥体与NDC

在透视投影中,截棱锥体(观察坐标)中的3D点会被映射到立方体(NDC)中。x坐标的范围从[l,f]到[-1,1],y坐标的范围从[b,t]到[-1,1],z坐标的范围从[n,f]到[-1,1]。

注意,观察坐标为右手坐标系,NDC使用左右坐标系。也就是说,位于原点的照相机在观察坐标中看向-Z轴,而在NDC中看向+Z轴。因为glFrustum()只接收正的近平面与远平面距离值,我们需要在构建GL_PROJECTION矩阵时对他们取反。

OpenGL中,观察空间中的3D点被投影到近平面(投影平面)上。下图展示观察空间中的点(xe,ye,ze)如何投影到近平面上的点(xp,yp,zp)。

 
视锥体的俯视图
 
视锥体的侧视图

从视锥体的俯视图看出,使用相似三角形比率计算方式将观察空间的x坐标xe被映射到xp

从视锥体的侧视图看出,yp也使用相同的方式计算出:

注意,xp与yp二者都依赖于ze,它们与-ze成反比例。也就是说,它们都被-ze除。这是构建GL_PROJECTION矩阵的第一点提示。在观察坐标通过与GL_PROJECTION矩阵相乘变换之后,裁减坐标依旧是其次坐标。它最终通过除以裁减坐标的w分量才变成归一化设备坐标(NDC)。(更详细描述参考OpenGL变换。)

,

因此,我们可以将裁减坐标的w分量设置为-ze。这样,GL_PROJECTION矩阵的第四行变为(0,0,-1,0)。

接着,我们通过线性关系将xp与yp映射到NDC中的xn与yn:[l,r]=>[-1,1],[b,t]=>[-1,1]。


映射xp到xn


映射yp到yn

然后,我们用上面的方程式替换xp与yp

   

注意,我们为透视除法(xc/wc, yc/wc)将每个等式相被-ze整除。前面我们已经将wc设置为-ze,大括号中的项为裁减坐标中xc与yc

从这个等式,我们可以发现GL_PROJECTION矩阵的第一与第二行。

现在,我们仅仅解决GL_PROJECTION矩阵的3行。由于观察空间中的ze总是投影到近平面上的-n点,zn的计算方法与其他坐标的计算方法有稍许不同。不过我们需要唯一的z值来进行裁剪与深度测试。此外,我们也会进行逆投影(逆变换)操作。因为,我们知道z并不依赖于x与y的值,我们借助w分量找寻zn与ze之间的关系。因此,我们可以像这样指定GL_PROJECTION矩阵的第三行:

在观察空间,we等于1。因此,等式变为:

为了计算系数A与B,我们使用(ze,zn)关系式(-n,-1)与(-f,1),且将它们带入到上述等式。

为了求解A与B,重写等式(1):

将等式(1')带入等式(2),然后求解A:

将A带入等式(1)中,求出B:

我们解出A与B。因此ze与zn的关系变为:

最后,我们解出GL_PROJECTION矩阵的所有元素。完整的投影矩阵为:


   OpenGL透视投影矩阵

该投影矩阵为通用截面体。如果视锥体为对称的,即r=-l且t=-b,则矩阵可简化为:

在开始后面讲述之前,请回顾ze与zn之间的关系:等式(3)。你会注意到它是一个有理数方程且ze与zn并非线性关系。也就是说近平面具有非常高的精度,而远平面的精度很低。如果[-n,-f]的范围变得很大,会引起深度精度问题(深度冲突):远平面附近ze的小变化不会影响zn值。为了最小化深度缓存精度问题,n与f的距离应该尽可能小。


深度缓存精度比较

正交投影


正交椎体与归一化设备坐标(NDC)

构造正交投影的GL_PROJECTION矩阵比透视投影模式简单很多。

观察空间的xe、ye与ze分量都线性映射到NDC。我们只需将长方体缩放为正方体,然后移动它到原点。让我们使用线性关系推导出GL_PROJECTION中的所有元素。


映射xe到xn


映射ye到yn


映射ze到zn

因为对于正交投影并不需要w分量,GL_PROJECTION矩阵的第4行依旧为(0,0,0,1)。因此,正交投影完整的GL_PROJECTION矩阵为:


OpenGL正交投影矩阵

如果视锥体是对称的(r=-l且t=-b),它可以进一步简化。

英文原文:http://www.songho.ca/opengl/gl_projectionmatrix.html

OpenGL投影矩阵的更多相关文章

  1. OpenGL投影矩阵【转】

    OpenGL投影矩阵 概述 透视投影 正交投影 概述 计算机显示器是一个2D平面.OpenGL渲染的3D场景必须以2D图像方式投影到计算机屏幕上.GL_PROJECTION矩阵用于该投影变换.首先,它 ...

  2. 关于Opengl投影矩阵

    读 http://www.songho.ca/opengl/gl_projectionmatrix.html 0.投影矩阵的功能: 将眼睛空间中的坐标点 [图A的视椎体]     映射到     一个 ...

  3. 【脚下生根】之深度探索安卓OpenGL投影矩阵

    世界变化真快,前段时间windows开发技术热还在如火如荼,web技术就开始来势汹汹,正当web呈现欣欣向荣之际,安卓小机器人,咬过一口的苹果,winPhone开发平台又如闪电般划破了混沌的web世界 ...

  4. OpenGL投影矩阵(Projection Matrix)构造方法

    (翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这 ...

  5. DX与OpenGL投影矩阵的区别

    之前学习DX和OpenGL时到是知道一点,但是没仔细研究过,只是跟着教程抄个公式就过了,看双API引擎时发现转换时是个问题,必须搞懂,gamedev上找了个解释,希望用得上. https://www. ...

  6. OpenGL中两种计算投影矩阵的函数

    OpenGL无意间同时看到两种创建投影矩阵的写法,可以说它们完成的是同样的功能,但写法完全不同,可以观摩一下什么叫做异曲同工之妙... 第一种: gltMakeShadowMatrix函数是重点 // ...

  7. Android OpenGL ES(六)----进入三维在代码中创建投影矩阵和旋转矩阵

    我们如今准备好在代码中加入透视投影了. Android的Matrix类为它准备了两个方法------frustumM()和perspectiveM(). 不幸的是.frustumM()的个缺陷,它会影 ...

  8. [OpenGL](翻译+补充)投影矩阵的推导

    1.简介 基本是翻译和补充 http://www.songho.ca/opengl/gl_projectionmatrix.html 计算机显示器是一个2D的平面,一个3D的场景要被OpenGL渲染必 ...

  9. OpenGL中投影矩阵的推导

    本文主要是对红宝书(第八版)第五章中给出的透视投影矩阵和正交投影矩阵做一个简单推导.投影矩阵的目的是:原始点P(x,y,z)对应后投影点P'(x',y',z')满足x',y',z'∈[-1,1]. 一 ...

随机推荐

  1. boost和std中的thread的引用参数

    boost 1.60.0 先上代码: #include <boost/thread.hpp> #include <iostream> void add(int &i) ...

  2. NethServer 7.2 RC1,增加深度数据包检测

    NethServer 7.2 RC1 "Saltimbocca"  发布了,NethServer是基于CentOS的面向服务器的Linux发行.该产品的主要特性是模块化的设计,这使 ...

  3. hive源码之新建一个coroutine

    最近由于项目需要读了一下云风老大的hive项目代码,因为对lua只有熟悉的水平,下面的东西必然多多错误:),只为记录. lua_State *sL = schedule_newtask(L); str ...

  4. JavaWeb--Servlet部分笔记

    1.集群:数万个服务器协同工作 2.web应用核心组件:jsp和servlet(属于门户),都在web容器中执行 3.web客户端发http请求(大的字符串)给web服务器:web服务器根据头信息来定 ...

  5. UIProgressView改变高度

    CGAffineTransform transform = CGAffineTransformMakeScale(1.0f, 3.0f); progressView.transform = trans ...

  6. JMeter 服务器性能监测插件介绍

    简介 压力测试过程中,能够随时对负载服务器的健康状况的把控是相当重要的,有了这些数据,我们才能准确分析出服务器负载瓶颈.当你面对的是一个集群的时候,如果能了解到负载是否被正确分发,是不是一件很棒的事情 ...

  7. C#中datatable导出excel(三种方法)

    方法一:(拷贝直接可以使用,适合大批量资料, 上万笔) Microsoft.Office.Interop.Excel.Application appexcel = new Microsoft.Offi ...

  8. jQuery的使用

    一.基本简介 1.下载:http://jquery.com提供了最新的jQuery框架下载.通常只需下载最小的jQuery包(Minified)即可. ( 目前最新的版本jquery-1.3.2.mi ...

  9. 排球积分规则功能说明书(spec)

    排球规则: 由技术性规定.非技术性规定和场地设备要求等方面的内容组成的.每场比赛仍为五局三胜,前四局每局先得25分为胜,第五局先得15分者为胜.当出现24平或14平时,要继续比赛至领先2分才能取胜. ...

  10. oracle xmltype导入并解析Excel数据 (三)解析Excel数据

    包声明 create or replace package PKG_EXCEL_UTILS is -- Author: zkongbai-- Create at: 2016-07-06-- Actio ...