bzoj 3529: [Sdoi2014]数表
#include<cstdio>
#include<iostream>
#include<algorithm>
#define M 200009
//#define N 100000
using namespace std;
struct data
{
int x,y,a1,yy;
}a[M];
struct dat
{
int F,id;
}b[M];
int n,mo[M],zhan[M],tnt,sum[M],st=,ans[M],N;
bool mark[M];
bool cmp(data b1,data b2)
{
return b1.a1<b2.a1;
}
bool cmp1(dat b1,dat b2)
{
return b1.F<b2.F;
}
void jia(int a1,int a2)
{
for(;a1<=N;a1+=a1&-a1)
sum[a1]+=a2;
return;
}
void mobiwus()
{
mo[]=;
for(int i=;i<=N;i++)
{
if(!mark[i])
{
zhan[++tnt]=i;
mo[i]=-;
}
for(int j=;i*zhan[j]<=N&&j<=tnt;j++)
{
mark[i*zhan[j]]=;
if(i%zhan[j])
mo[i*zhan[j]]=mo[i]*mo[zhan[j]];
else
mo[i*zhan[j]]=;
}
}
return;
}
int query(int a1)
{
int ss=;
for(;a1;a1-=a1&-a1)
ss+=sum[a1];
return ss;
}
void su(int n,int m,int j)
{
if(n>m)
swap(n,m);
int last=,re=;
for(int i=;i<=n;i=last+)
{
last=min(n/(n/i),m/(m/i));
re+=(n/i)*(m/i)*(query(last)-query(i-));
}
ans[j]=re;
return;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].a1);
a[i].yy=i;
N=max(N,a[i].x);
N=max(N,a[i].y);
}
sort(a+,a+n+,cmp);
mobiwus();
for(int i=;i<=N;i++)
{
b[i].F=;
b[i].id=i;
}
for(int i=;i<=N;i++)
for(int j=;j*i<=N;j++)
b[i*j].F+=i;
sort(b+,b+N+,cmp1);
for(int i=;i<=n;i++)
{
for(;b[st].F<=a[i].a1&&st<=N;st++)
for(int j=;j*b[st].id<=N;j++)
jia(j*b[st].id,b[st].F*mo[j]);
su(a[i].x,a[i].y,a[i].yy);
}
for(int i=;i<=n;i++)
printf("%d\n",ans[i]&0x7fffffff);
return ;
}
莫比乌斯反演
bzoj 3529: [Sdoi2014]数表的更多相关文章
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)
Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...
- ●BZOJ 3529 [Sdoi2014]数表
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...
- 【刷题】BZOJ 3529 [Sdoi2014]数表
Description 有一张n×m的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. In ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
- BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组
$ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- 3529: [Sdoi2014]数表 - BZOJ
Description 有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...
- 【BZOJ】3529: [Sdoi2014]数表
题意:求 $$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|(i, j)} d 且 (\sum_{d|(i, j)} d)<=a$$ n, m<=1e5,q次 ...
随机推荐
- python 类
封装 继承(可多继承) 多态 经典类:深度优先 新式类(继承object):广度优先 模板: class <类名>(object): <语句> class <类名> ...
- kali安装java1.8
0x01 下载 首先,去官方网站下载JDK1.8对应的版本 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads ...
- MySQL基本数据类型
MySQL数据类型包括:整型.浮点型.日期类型.字符型,这里用表格的方式详细说明每个数据类型,这些只要记住常用的即可,需要再查阅. 整型 数据类型 存储范围 字节 TINYINT 有符号值:-128 ...
- vnc连接kali 2.0 报错:A problem has occurred and the system can't recover.
kali版本: root@kali:~# uname -a Linux kali -kali1-amd64 # SMP Debian -7kali2 (--) x86_64 GNU/Linux 第一步 ...
- LaTeX用dvi编译,Yap浏览器弹出对话框,决解办法(傻瓜教程)
1,打开windows-----所有运用,找到CTEX的文件目录 2,打开Previewer对话框 打开后如图: 2,选择view – option 打开后如下图: 3,选择Display---- ...
- js 对多sheet Excel赋值操作
function ExpExcel(){ var tempStr = ""; var filePath ="" var excelname=ReportFile ...
- Mac系统下配置Tomcat
1.下载Tomcat,网址:http://tomcat.apache.org/download-70.cgi: 2.进入终端Terminal,打开配置文件.bash_profile,输入open .b ...
- 1004. Counting Leaves (30)
1004. Counting Leaves (30) A family hierarchy is usually presented by a pedigree tree. Your job is ...
- Rails中的缓存
最近学习Rails. 看到如下代码: <% if notice %> <p id="notice"><%= notice %></p> ...
- VS.Net 2015 Update3 学习(1) 支持Webpack
让vs.net 编译的时候自动执行webpack 首先 管理员模式下打开 “Developer Command Prompt for VS2015", 是管理员模式啊! 然后进入 cd c: ...