Image recognition with Support Vector Machines

#our dataset is provided within scikit-learn
#let's start by importing and printing its description
import sklearn as sk
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces()
print(faces.DESCR)

Modified Olivetti faces dataset. The original database was available from (now defunct)

http://www.uk.research.att.com/facedatabase.html

The version retrieved here comes in MATLAB format from the personal web page of Sam Roweis:

http://www.cs.nyu.edu/~roweis/

There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement). The original dataset consisted of 92 x 112, while the Roweis version consists of 64x64 images.

print(faces.keys())
print(faces.images.shape)
print(faces.data.shape)
print(faces.target.shape)
print(np.max(faces.data))
print(np.min(faces.data))
print(np.mean(faces.data))

Before learning, let’s plot some faces.

def print_faces(images, target, top_n):
#set up the figure size in inches
fig = plt.figure(figsize=(12, 12))
fig.subplots_adjust(left = 0, right = 1, bottom = 0, top = 1, hspace = 0.05,wspace = 0.05)
for i in range(top_n):
#plot the images in a matrix of 20x20
p = fig.add_subplot(20, 20, i + 1, xticks = [], yticks = [])
p.imshow(images[i], cmap = plt.cm.bone)
#label the image with target value
p.text(0, 14, str(target[i]))
p.text(0, 60, str(i))

If we print the first 20 images, we can see faces from two faces.(但是不知道为什么,打印不出图片)

print_faces(faces.images, faces.target, 20)

Training a Support Vector machine

Import the SVC class from the sklearn.svm module:

from sklearn.svm import SVC
To start, we will use the simplest kernel, the linear one
svc_1 = SVC(kernel = 'linear')

Before continuing, we will split our dataset into training and testing datasets.

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(faces.data,faces.target, test_size = 0.25, random_state = 0)

And we will define a function to evaluate K-fold cross-validation.

from sklearn.cross_validation import cross_val_score, KFold
from scipy.stats import sem
def evaluate_cross_validation(clf, X, y, K):
#create a k-fold cross validation iterator
cv = KFold(len(y), K, shuffle=True, random_state=0)
#by default the score used is the one return by score method of the estimator (accuracy)
scores = cross_val_score(clf, X, y, cv = cv)
print(scores)
print(("Mean score: {0: .3f} (+/-{1: .3f})").format(np.mean(scores), sem(scores)))
evaluate_cross_validation(svc_1, X_train, y_train, 5)
[ 0.93333333  0.86666667  0.91666667  0.93333333  0.91666667]
Mean score: 0.913 (+/- 0.012)

We will also define a function to perform training on the training set and evaluate the performance on the testing set.

from sklearn import metrics
def train_and_evaluate(clf, X_train, X_test, y_train, y_test):
clf.fit(X_train, y_train)
print("Accuracy on training set:")
print(clf.score(X_train, y_train))
print("Accuracy on testing set:")
print(clf.score(X_test, y_test)) y_pred = clf.predict(X_test) print("Classification Report:")
print(metrics.classification_report(y_test, y_pred))
print("Confusion Matrix:")
print(metrics.confusion_matrix(y_test, y_pred))
train_and_evaluate(svc_1, X_train, X_test, y_train, y_test)

Accuracy on training set: 1.0 Accuracy on testing set: 0.99

classify the faces as people with and without glasses

First thing to do is to defne the range of the images that show faces wearing glasses.
The following list shows the indexes of these images:

# the index ranges of images of people with glasses
glasses = [
(10, 19), (30, 32), (37, 38), (50, 59), (63, 64),
(69, 69), (120, 121), (124, 129), (130, 139), (160, 161),
(164, 169), (180, 182), (185, 185), (189, 189), (190, 192),
(194, 194), (196, 199), (260, 269), (270, 279), (300, 309),
(330, 339), (358, 359), (360, 369)
]

Then we'll defne a function that from those segments returns a new target array that marks with 1 for the faces with glasses and 0 for the faces without glasses (our new target classes):

def create_target(segments):
# create a new y array of target size initialized with zeros
y = np.zeros(faces.target.shape[0])
# put 1 in the specified segments
for (start, end) in segments:
y[start:end + 1] = 1
return y
target_glasses = create_target(glasses)

So we must perform the training/testing split again.

X_train, X_test, y_train, y_test = train_test_split(faces.data, target_glasses, test_size=0.25, random_state=0)

Now let's create a new SVC classifer, and train it with the new target vector using the following command:

svc_2 = SVC(kernel='linear')

If we check the performance with cross-validation by the following code:

evaluate_cross_validation(svc_2, X_train, y_train, 5)
[ 1.          0.95        0.98333333  0.98333333  0.93333333]
Mean score: 0.970 (+/- 0.012)

We obtain a mean accuracy of 0.970 with cross-validation if we evaluate on our testing set.

 train_and_evaluate(svc_2, X_train, X_test, y_train, y_test)
Accuracy on training set:
1.0
Accuracy on testing set:
0.99
Classification Report:
precision recall f1-score support 0.0 1.00 0.99 0.99 67
1.0 0.97 1.00 0.99 33 avg / total 0.99 0.99 0.99 100 Confusion Matrix:
[[66 1]
[ 0 33]]

Could it be possible that our classifer has learned to identify peoples' faces associated with glasses and without glasses precisely? How can we be sure that this is not happening and that if we get new unseen faces, it will work as expected? Let's separate all the images of the same person, sometimes wearing glasses and sometimes not. We will also separate all the images of the same person, the ones with indexes from 30 to 39, train by using the remaining instances, and evaluate on our new 10 instances set. With this experiment we will try to discard the fact that it is remembering faces, not glassed-related features.

X_test = faces.data[30:40]
y_test = target_glasses[30:40]
print(y_test.shape[0])
select = np.ones(target_glasses.shape[0])
select[30:40] = 0
X_train = faces.data[select == 1]
y_train = target_glasses[select == 1]
print(y_train.shape[0])
svc_3 = SVC(kernel='linear')
train_and_evaluate(svc_3, X_train, X_test, y_train, y_test)
10
390
Accuracy on training set:
1.0
Accuracy on testing set:
0.9
Classification Report:
precision recall f1-score support 0.0 0.83 1.00 0.91 5
1.0 1.00 0.80 0.89 5 avg / total 0.92 0.90 0.90 10 Confusion Matrix:
[[5 0]
[1 4]]

From the 10 images, only one error, still pretty good results, let's check out which one was incorrectly classifed. First, we have to reshape the data from arrays to 64 x 64 matrices:

y_pred = svc_3.predict(X_test)
eval_faces = [np.reshape(a, (64, 64)) for a in X_test]

Then plot with our print_faces function:

print_faces(eval_faces, y_pred, 10)

The image number 8 in the preceding fgure has glasses and was classifed as no glasses. If we look at that instance, we can see that it is different from the rest of the images with glasses (the border of the glasses cannot be seen clearly and the person is shown with closed eyes), which could be the reason it has been misclassifed.

sklearn学习笔记1的更多相关文章

  1. sklearn学习笔记之简单线性回归

    简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...

  2. sklearn学习笔记3

    Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful superv ...

  3. sklearn学习笔记2

    Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using ...

  4. sklearn学习笔记

    用Bagging优化模型的过程:1.对于要使用的弱模型(比如线性分类器.岭回归),通过交叉验证的方式找到弱模型本身的最好超参数:2.然后用这个带着最好超参数的弱模型去构建强模型:3.对强模型也是通过交 ...

  5. sklearn学习笔记(一)——数据预处理 sklearn.preprocessing

    https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...

  6. sklearn学习笔记之岭回归

    岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病 ...

  7. sklearn学习笔记之开始

    简介   自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了.scikit-learn简称sklearn,支持包括分类.回归.降维和聚类四大机器学习算法.还包含了特征 ...

  8. sklearn学习笔记(1)--make_blobs函数及相应参数简介

    make_blobs方法: sklearn.datasets.make_blobs(n_samples=100,n_features=2,centers=3, cluster_std=1.0,cent ...

  9. Google TensorFlow深度学习笔记

    Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...

随机推荐

  1. 问题:https与http有什么区别啊?

    HTTPS(Secure Hypertext Transfer Protocol)安全超文本传输协议  它是一个安全通信通道,它基于HTTP开发,用于在客户计算机和服务器之间交换信息.它使用安全套接字 ...

  2. IIS错误:在唯一密钥属性 fileExtension=".url"时,无法添加类型为“mimeMap”的重复集合项

    代码可以运行,但没有加载上样式,后来在IIS点击MIME类型时报错了 查看web.config中 <staticContent> <mimeMap fileExtension=&qu ...

  3. VMware卸载出现“the msi failed”解决办法

    最近被VMware卸载搞烦死掉,最后通过这个帖子解决. http://www.cnblogs.com/noble/p/4144267.html 总结:有啥软件使用问题最好找官方的FAQ找答案,不然百度 ...

  4. Oracle执行时间与sql格式

    今天碰到一个很奇怪的问题,直接在eclipse中将sql拷出,然后直接粘贴复制在数据库中就会执行的非常慢,但是在利用plsql对sql语句进行格式整理之后,执行的速度就非常的快,之后我where条件中 ...

  5. centos 6 cglib

    Error: Package: glibc-2.12-1.166.el6_7.3.i686 (@ultra-centos-6.7-updates) Requires: glibc-common = 2 ...

  6. Kindle Unlimited上的技术书籍

            直达链接:Kindle Unlimited         前不久,亚马逊在中国也推出了电子书包月服务.消息不灵通的我过了好久才看到这个消息,随后第一时间上官网查看具体情况.      ...

  7. Unity 相关经典博客资源总结(持续更新)

    就作为一个记录吧,把平时看过的Unity相关的一些好的Blog记录并分享. 好的论坛: Unity官方脚本  点评:这个不用说了,最核心的内容,理解整个Unity引擎的方方面面,梳理结构. Unity ...

  8. nsq

    官网:http://nsq.io (1)描述 都是message broker,rabbitmq久经考验,nsq则是后起之秀.rabbitmq是erlang编写,nsq是golang. 安装:http ...

  9. php lock_sh共享锁 与 lock_ex排他锁

    参考网站:http://hi.baidu.com/honly1215/item/8d27a66d11689c3aac3e83fe 文件锁有两种:共享锁和排他锁,也就是读锁(LOCK_SH)和写锁(LO ...

  10. break,continue的使用

    break,continue 使用break命令允许跳出所有循环下面的例子中,脚本进入死循环直至用户输入数字大于5.要跳出这个循环,返回到shell提示符下,就要使用break命令. #!/bin/b ...