comvert hmp to ped1, ped2, map file
SB1.ped, SB2.ped, SB.map

1, choose 20 markers for 30 times
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect)
python ../choose_multi-markers.py SB.imputed.916.filtered.hmp 20 30 marker pheno

2, combine pheno, ped1, ped2 to intact ped file

python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh

3, copy SB.map to 30 different SB-*.map
 python ../CPmapTOmore.py 30 SB-

4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 6 < PLINK.cmd

5, run gemma
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 6 < gemma.cmd

Calculate FDR value:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR)
1, shuffle pheno1.txt to 100 pheno*.txt
python ../shufflePheno.py pheno3.txt 100 pheno-shuffled

2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 100 > combine.sh
parallel -j 100 < combine.sh

3, copy SB.map to 100 different SB-shuffle*.map
python ../CPmapTOmore.py  100 SB-shuffle-

4, *map, *ped to *bed, *bim, *fam
 python ../generatePLINKcmd.py 100 SB-shuffle- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 10 < PLINK.cmd

5, run gemma
python ../generateGemmaCmd.py 100 SB-shuffle- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 10 < gemma.cmd

6, calsulate FDR
cd output
python ../../calculateFDR.py SB-shuffle- 100 results.txt

Calculate average Power:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/output)
python ../../calPower.py SB- marker 30 /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR/output/results.txt SB-
python ../../calAveragePower.py SB-

generage new effect 0.9+8
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect)
ln -s /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/markers-new* .
ln -s ../Imputed/SB.imputed.916.filtered.hmp .
python ../newEffect.py SB.imputed.916.filtered.hmp markers-new 30

事实证明:

平均数取8, 20, 100 模拟结果一样

effect value 取0.9 和0.9*20 结果也一样,

表面结果不同是由于FDR不同导致的。

观察average power in different MAF region:

WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect20/output

python ../../DrawHist20Markers.py

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100/output

$ python ../../DrawHist5Markers.py

可以看到随着MAF增大, power上升。从以上两图也可以推测出整体的MAF分布,多数markers都在0.01-0.1之间。

整体分布:

WD: /share/bioinfo/miaochenyong/GWAS/SB/Imputed

python ../DrawMAFHist.py SB.imputed.916.filtered.hmp

增加遗传率:

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100

python ../genHeritability.py pheno9.txt 0.7 pheno9-0.7H.txt

上图是5个markers, 发现很多个体有相同的表型,对20个makers的进行作图:

一样的表型很少。

calculate average power of various heritability:

1,generate new phenotype data containing heritability

cd  /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100

python ../genHeriPheno.py pheno 30 0.7 phenoH0.7-

cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100-0.7H

mv /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/phenoH0.7-* .

cp /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/marker* .

python ../genCombine.py phenoPrefix 30 > combine.sh

parallel -j 30 < combine.sh

python ../CPmapTOmore.py 30 SB-

python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
parallel -j 6 < PLINK.cmd

python ../generateGemmaCmd.py 30 SB- > gemma.cmd
parallel -j 6 < gemma.cmd

Statistical results in Sorghum:

统计结果图:

MAF distribution in Seteria Italic:

python DrawMAFHist.py Seteria.imputed.GT.txt

发现小于0.05的基本没有,应该是被过滤掉了。

去除SB和SI中MAF 小于0.05的markers!

Transfer SI GT format to HMP format(SI directory):

python  GT2HMP.py Seteria.imputed.GT.txt Seteria.imputed.hmp

SI 有726080 个markers

WD: SB_VS_SI/

python FilterMAF.py SB.imputed.916.filtered.hmp SB.filteredMAF.hmp SB剩余198629 markers

python FilterMAF.py Seteria.imputed.hmp Seteria.filteredMAF.hmp SI剩余725588 markers

重新画MAF分布图 看两者是否相近,相近的话随机选择marker!

SB MAF filtered:

SI MAF filtered:

select 198629 markers randomly from 725588 markers in SI:

python  selectMarkers.py SI.filteredMAF.hmp 198629 SI.filteredMAF198629.hmp

重新做分布图:

cmiao

UNL

beadle center

GWAS Simulation的更多相关文章

  1. causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation

    先读几篇文章: Interpretation of Association Signals and Identification of Causal Variants from Genome-wide ...

  2. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

  3. GWAS Catalog数据库简介

    GWAS Catalog The NHGRI-EBI Catalog of published genome-wide association studies EBI负责维护的一个收集已发表的GWAS ...

  4. 【GWAS文献】基于GWAS与群体进化分析挖掘大豆相关基因

    Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improv ...

  5. Gate level Simulation(门级仿真)

    1 什么是后仿真? 后仿真也成为时序仿真,门级仿真,在芯片布局布线后将时序文件SDF反标到网标文件上,针对带有时序信息的网标仿真称为后仿真. 2 后仿真是用来干嘛的? 检查电路中的timing vio ...

  6. fdtd simulation, plotting with gnuplot, writting in perl

    # 9月13日 于成都黄龙溪 1 #!/usr/bin/perl # Author : Leon Email: yangli0534@gmail.com # fdtd simulation , plo ...

  7. 【转载】PMC/PEC Boundary Conditions and Plane Wave Simulation

    原文链接 PMC/PEC Boundary Conditions and Plane Wave Simulation (FDTD) OptiFDTD now has options to use Pe ...

  8. dipole antenna simulation by CST

    CST偶极子天线仿真,半波振子天线 一.本文使用CST仿真频率为1GHz的偶极子天线,使用2013版本.仿真的步骤为 1.选择一个CST的天线工程模板 2.设置好默认的单位 3.设置背景的材料(空气腔 ...

  9. Logic and Fault simulation

    fault simulation是指对fault circuit的simulation,来locate manufacturing defects并且进行fault diagnosis. logic ...

随机推荐

  1. spark发行版笔记4Spark Streaming事务处理彻底掌握

    Spark Streaming事务处理彻底掌握 感谢DT大数据梦工厂支持提供以下内容,DT大数据梦工厂专注于Spark发行版定制. 内容概括: 1Exactly once 2 输出不重复 1 正如银行 ...

  2. Spring事务管理器的应对

    Spring抽象的DAO体系兼容多种数据访问技术,它们各有特色,各有千秋.像Hibernate是非常优秀的ORM实现方案,但对底层SQL的控制不太方便:而iBatis则通过模板化技术让你方便地控制SQ ...

  3. Python学习07——字典(2)

    笨办法学Python第40节,上次用的第三版的书,这次是第四版的书. 这一节的代码如下: cities = {'CA':'San Francisco', 'MI':'Detroit', 'FL':'J ...

  4. 笔记:linux下mysql设置utf-8编码方法

    一:查看mysql版本 1.1 mysql –V 在终端界面输入上面命令.显示如下: mysql Ver 14.14 Distrib 5.5.35, fordebian-linux-gnu (x86_ ...

  5. sasasa

    /***************************************************************************************** 文件:app_to ...

  6. textbox只能输入数字或中文的常用正则表达式和验证方法

    验证数字的正则表达式集 验证数字:^[0-9]*$ 验证n位的数字:^\d{n}$ 验证至少n位数字:^\d{n,}$ 验证m-n位的数字:^\d{m,n}$ 验证零和非零开头的数字:^(0|[1-9 ...

  7. C++模拟C#事件委托机制(一)

    原文来自于http://www.cnblogs.com/netssfy/articles/1652671.html 写了一段时间的C#代码后确实发现C#的事件委托非常好用.于是便想是否在C++中也能如 ...

  8. Tomcat配置错误导致Quartz执行两次问题

    以下基于tomcat服务器 我们通常将域名映射到指定服务器的端口上,以通过域名直接访问服务,如http://www.abc.com域名已绑定到本机的80端口,项目名wechat,则直接访问http:/ ...

  9. JDK动态代理与CGLib动态代理

    1.JDK动态代理 JDK1.3以后java提供了动态代理技术,允许开发者在运行期创建接口的代理实例,动态代理是实现AOP的绝好底层技术. JDK的动态代理主要涉及到java.lang.reflect ...

  10. 个人对sort()排序方法中比较函数一直很混乱,今日理清

    需求:使用随机数来打印出0-10,并排序. 代码: var a = new Array();var testArray = function() { while (1) { var b = parse ...