comvert hmp to ped1, ped2, map file
SB1.ped, SB2.ped, SB.map

1, choose 20 markers for 30 times
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect)
python ../choose_multi-markers.py SB.imputed.916.filtered.hmp 20 30 marker pheno

2, combine pheno, ped1, ped2 to intact ped file

python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh

3, copy SB.map to 30 different SB-*.map
 python ../CPmapTOmore.py 30 SB-

4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 6 < PLINK.cmd

5, run gemma
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 6 < gemma.cmd

Calculate FDR value:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR)
1, shuffle pheno1.txt to 100 pheno*.txt
python ../shufflePheno.py pheno3.txt 100 pheno-shuffled

2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 100 > combine.sh
parallel -j 100 < combine.sh

3, copy SB.map to 100 different SB-shuffle*.map
python ../CPmapTOmore.py  100 SB-shuffle-

4, *map, *ped to *bed, *bim, *fam
 python ../generatePLINKcmd.py 100 SB-shuffle- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 10 < PLINK.cmd

5, run gemma
python ../generateGemmaCmd.py 100 SB-shuffle- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 10 < gemma.cmd

6, calsulate FDR
cd output
python ../../calculateFDR.py SB-shuffle- 100 results.txt

Calculate average Power:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/output)
python ../../calPower.py SB- marker 30 /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR/output/results.txt SB-
python ../../calAveragePower.py SB-

generage new effect 0.9+8
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect)
ln -s /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/markers-new* .
ln -s ../Imputed/SB.imputed.916.filtered.hmp .
python ../newEffect.py SB.imputed.916.filtered.hmp markers-new 30

事实证明:

平均数取8, 20, 100 模拟结果一样

effect value 取0.9 和0.9*20 结果也一样,

表面结果不同是由于FDR不同导致的。

观察average power in different MAF region:

WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect20/output

python ../../DrawHist20Markers.py

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100/output

$ python ../../DrawHist5Markers.py

可以看到随着MAF增大, power上升。从以上两图也可以推测出整体的MAF分布,多数markers都在0.01-0.1之间。

整体分布:

WD: /share/bioinfo/miaochenyong/GWAS/SB/Imputed

python ../DrawMAFHist.py SB.imputed.916.filtered.hmp

增加遗传率:

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100

python ../genHeritability.py pheno9.txt 0.7 pheno9-0.7H.txt

上图是5个markers, 发现很多个体有相同的表型,对20个makers的进行作图:

一样的表型很少。

calculate average power of various heritability:

1,generate new phenotype data containing heritability

cd  /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100

python ../genHeriPheno.py pheno 30 0.7 phenoH0.7-

cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100-0.7H

mv /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/phenoH0.7-* .

cp /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/marker* .

python ../genCombine.py phenoPrefix 30 > combine.sh

parallel -j 30 < combine.sh

python ../CPmapTOmore.py 30 SB-

python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
parallel -j 6 < PLINK.cmd

python ../generateGemmaCmd.py 30 SB- > gemma.cmd
parallel -j 6 < gemma.cmd

Statistical results in Sorghum:

统计结果图:

MAF distribution in Seteria Italic:

python DrawMAFHist.py Seteria.imputed.GT.txt

发现小于0.05的基本没有,应该是被过滤掉了。

去除SB和SI中MAF 小于0.05的markers!

Transfer SI GT format to HMP format(SI directory):

python  GT2HMP.py Seteria.imputed.GT.txt Seteria.imputed.hmp

SI 有726080 个markers

WD: SB_VS_SI/

python FilterMAF.py SB.imputed.916.filtered.hmp SB.filteredMAF.hmp SB剩余198629 markers

python FilterMAF.py Seteria.imputed.hmp Seteria.filteredMAF.hmp SI剩余725588 markers

重新画MAF分布图 看两者是否相近,相近的话随机选择marker!

SB MAF filtered:

SI MAF filtered:

select 198629 markers randomly from 725588 markers in SI:

python  selectMarkers.py SI.filteredMAF.hmp 198629 SI.filteredMAF198629.hmp

重新做分布图:

cmiao

UNL

beadle center

GWAS Simulation的更多相关文章

  1. causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation

    先读几篇文章: Interpretation of Association Signals and Identification of Causal Variants from Genome-wide ...

  2. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

  3. GWAS Catalog数据库简介

    GWAS Catalog The NHGRI-EBI Catalog of published genome-wide association studies EBI负责维护的一个收集已发表的GWAS ...

  4. 【GWAS文献】基于GWAS与群体进化分析挖掘大豆相关基因

    Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improv ...

  5. Gate level Simulation(门级仿真)

    1 什么是后仿真? 后仿真也成为时序仿真,门级仿真,在芯片布局布线后将时序文件SDF反标到网标文件上,针对带有时序信息的网标仿真称为后仿真. 2 后仿真是用来干嘛的? 检查电路中的timing vio ...

  6. fdtd simulation, plotting with gnuplot, writting in perl

    # 9月13日 于成都黄龙溪 1 #!/usr/bin/perl # Author : Leon Email: yangli0534@gmail.com # fdtd simulation , plo ...

  7. 【转载】PMC/PEC Boundary Conditions and Plane Wave Simulation

    原文链接 PMC/PEC Boundary Conditions and Plane Wave Simulation (FDTD) OptiFDTD now has options to use Pe ...

  8. dipole antenna simulation by CST

    CST偶极子天线仿真,半波振子天线 一.本文使用CST仿真频率为1GHz的偶极子天线,使用2013版本.仿真的步骤为 1.选择一个CST的天线工程模板 2.设置好默认的单位 3.设置背景的材料(空气腔 ...

  9. Logic and Fault simulation

    fault simulation是指对fault circuit的simulation,来locate manufacturing defects并且进行fault diagnosis. logic ...

随机推荐

  1. iOS_开发中引导页的设置及代码

    在iOS 手机App 软件的开发中, 基本上每一个完整的App 都有与之相对应的引导页的设置,引导页也会有很多种设置的方式,根据不同的情况,选择不同的编码,在这里,我分享一下自己关于引导页的一些看法和 ...

  2. mysql-5.6.17-win32的安装?

    官方mysql最新版本:http://cdn.mysql.com/Downloads/MySQL-5.6/mysql-5.6.17.tar.gz 解压后,以管理员的身份打开cmd.exe,切入安装目录 ...

  3. JSTL跳出<c:forEach>循环

    <c:forEach items="${consultPager.dataList }" var="consult"> <tr> < ...

  4. 关于java 定时器的使用总结

    直接上代码,代码中有注释(代码中还有一些本人的其他测试,读者可以忽略不计).读者在代码中发现了bug,欢迎指正. package j2se.system.test; import java.text. ...

  5. MySQL workbench 中文乱码 显示口口

    Edit-->perference...-->Apperance  如下图 即可 转载自:http://blog.csdn.net/shxluwei/article/details/802 ...

  6. [DNS][转]EDNS

    随着业务的复杂化和多样化,RFC1035中定义的DNS消息格式和它支持的消息内容已经不足以满足一些DNS服务器的需求,于是,RFC2671 中提出了一种扩展DNS机制EDNS(Extension Me ...

  7. maven 问题解决 tools以及jconsole两个jar包 无效

    在SVN上下载项目,结果完成后出现两个jar包不存在的情况 如下图: 然后,第一步就是去查看POM.xml文件是否配置了这两个文件,结果并没有,于是就更加奇怪了 所以怀疑是不是其他maven下载的ja ...

  8. 移动混合开发之文件管理Final之总结

    从昨天开始:2016年7月日,早晨用时1+2个小时左右,最开始还怀疑自己能否解决,但是最终还是自己解决, 所以下次遇到问题,最好还是尽量尝试自己解决. 1.css在设计的时候,一定要把父元素的长宽高指 ...

  9. 发布mvc遇到的HTTP错误 403.14-Forbidden解决办法

    发布mvc遇到的HTTP错误 403.14-Forbidden解决办法   <system.webServer>   <validationvalidateIntegratedMod ...

  10. PYTHON 链接 Oracle

    一.  cx_Oracle Python 连接Oracle 数据库,需要使用cx_Oracle 包. 该包的下载地址:http://cx-Oracle.sourceforge.net/ 下载的时候,注 ...