comvert hmp to ped1, ped2, map file
SB1.ped, SB2.ped, SB.map

1, choose 20 markers for 30 times
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect)
python ../choose_multi-markers.py SB.imputed.916.filtered.hmp 20 30 marker pheno

2, combine pheno, ped1, ped2 to intact ped file

python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh

3, copy SB.map to 30 different SB-*.map
 python ../CPmapTOmore.py 30 SB-

4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 6 < PLINK.cmd

5, run gemma
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 6 < gemma.cmd

Calculate FDR value:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR)
1, shuffle pheno1.txt to 100 pheno*.txt
python ../shufflePheno.py pheno3.txt 100 pheno-shuffled

2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 100 > combine.sh
parallel -j 100 < combine.sh

3, copy SB.map to 100 different SB-shuffle*.map
python ../CPmapTOmore.py  100 SB-shuffle-

4, *map, *ped to *bed, *bim, *fam
 python ../generatePLINKcmd.py 100 SB-shuffle- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 10 < PLINK.cmd

5, run gemma
python ../generateGemmaCmd.py 100 SB-shuffle- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 10 < gemma.cmd

6, calsulate FDR
cd output
python ../../calculateFDR.py SB-shuffle- 100 results.txt

Calculate average Power:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/output)
python ../../calPower.py SB- marker 30 /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR/output/results.txt SB-
python ../../calAveragePower.py SB-

generage new effect 0.9+8
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect)
ln -s /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/markers-new* .
ln -s ../Imputed/SB.imputed.916.filtered.hmp .
python ../newEffect.py SB.imputed.916.filtered.hmp markers-new 30

事实证明:

平均数取8, 20, 100 模拟结果一样

effect value 取0.9 和0.9*20 结果也一样,

表面结果不同是由于FDR不同导致的。

观察average power in different MAF region:

WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect20/output

python ../../DrawHist20Markers.py

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100/output

$ python ../../DrawHist5Markers.py

可以看到随着MAF增大, power上升。从以上两图也可以推测出整体的MAF分布,多数markers都在0.01-0.1之间。

整体分布:

WD: /share/bioinfo/miaochenyong/GWAS/SB/Imputed

python ../DrawMAFHist.py SB.imputed.916.filtered.hmp

增加遗传率:

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100

python ../genHeritability.py pheno9.txt 0.7 pheno9-0.7H.txt

上图是5个markers, 发现很多个体有相同的表型,对20个makers的进行作图:

一样的表型很少。

calculate average power of various heritability:

1,generate new phenotype data containing heritability

cd  /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100

python ../genHeriPheno.py pheno 30 0.7 phenoH0.7-

cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100-0.7H

mv /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/phenoH0.7-* .

cp /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/marker* .

python ../genCombine.py phenoPrefix 30 > combine.sh

parallel -j 30 < combine.sh

python ../CPmapTOmore.py 30 SB-

python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
parallel -j 6 < PLINK.cmd

python ../generateGemmaCmd.py 30 SB- > gemma.cmd
parallel -j 6 < gemma.cmd

Statistical results in Sorghum:

统计结果图:

MAF distribution in Seteria Italic:

python DrawMAFHist.py Seteria.imputed.GT.txt

发现小于0.05的基本没有,应该是被过滤掉了。

去除SB和SI中MAF 小于0.05的markers!

Transfer SI GT format to HMP format(SI directory):

python  GT2HMP.py Seteria.imputed.GT.txt Seteria.imputed.hmp

SI 有726080 个markers

WD: SB_VS_SI/

python FilterMAF.py SB.imputed.916.filtered.hmp SB.filteredMAF.hmp SB剩余198629 markers

python FilterMAF.py Seteria.imputed.hmp Seteria.filteredMAF.hmp SI剩余725588 markers

重新画MAF分布图 看两者是否相近,相近的话随机选择marker!

SB MAF filtered:

SI MAF filtered:

select 198629 markers randomly from 725588 markers in SI:

python  selectMarkers.py SI.filteredMAF.hmp 198629 SI.filteredMAF198629.hmp

重新做分布图:

cmiao

UNL

beadle center

GWAS Simulation的更多相关文章

  1. causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation

    先读几篇文章: Interpretation of Association Signals and Identification of Causal Variants from Genome-wide ...

  2. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

  3. GWAS Catalog数据库简介

    GWAS Catalog The NHGRI-EBI Catalog of published genome-wide association studies EBI负责维护的一个收集已发表的GWAS ...

  4. 【GWAS文献】基于GWAS与群体进化分析挖掘大豆相关基因

    Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improv ...

  5. Gate level Simulation(门级仿真)

    1 什么是后仿真? 后仿真也成为时序仿真,门级仿真,在芯片布局布线后将时序文件SDF反标到网标文件上,针对带有时序信息的网标仿真称为后仿真. 2 后仿真是用来干嘛的? 检查电路中的timing vio ...

  6. fdtd simulation, plotting with gnuplot, writting in perl

    # 9月13日 于成都黄龙溪 1 #!/usr/bin/perl # Author : Leon Email: yangli0534@gmail.com # fdtd simulation , plo ...

  7. 【转载】PMC/PEC Boundary Conditions and Plane Wave Simulation

    原文链接 PMC/PEC Boundary Conditions and Plane Wave Simulation (FDTD) OptiFDTD now has options to use Pe ...

  8. dipole antenna simulation by CST

    CST偶极子天线仿真,半波振子天线 一.本文使用CST仿真频率为1GHz的偶极子天线,使用2013版本.仿真的步骤为 1.选择一个CST的天线工程模板 2.设置好默认的单位 3.设置背景的材料(空气腔 ...

  9. Logic and Fault simulation

    fault simulation是指对fault circuit的simulation,来locate manufacturing defects并且进行fault diagnosis. logic ...

随机推荐

  1. <java基础学习>02JAVA的基础组成(2)

    60000-0000 0000-0000 0000-0000 0000-0110 0000-0110 -6这个数的正数的二进制取反,再加1 0000-0110取反: 1111-1001 + 0000- ...

  2. Xcode8 上架前属性列表添加权限

    需要注意的是,权限的string,也就是提示语句也要设置,都设置好之后,一次就上传成功,可以添加构建版本了.    <key>NSBluetoothPeripheralUsageDescr ...

  3. node.js中buffer需要知道的一些点

    本文为阅读朴灵大大的<深入浅出node.js>笔记: 在前端开发的时候,我们不曾用过buffer,也没得用.buffer是node环境引入的,用来方便应对二进制数据的处理.这里我们对它应该 ...

  4. XML特殊字符处理

    XML共有5个特殊字符,分别为:&<>"' 如果XML文件中需要包含如上5个特殊字符,有两种方式: 1.将包含特殊字符的字符串放在<![CDATA[]]>中 ...

  5. linux内核学习之七 可执行程序的装载和运行

    一 程序的装载和运行的基本知识补充    1 当进程开始执行一个新的程序时,从父进程继承的所有页被释放,以便在新的用户地址空间开始执行新的计算,甚至进程的特权都可能发生改变,但是,进程的PID不会改变 ...

  6. 我的PHP编程环境变迁:notepad -> notepad++ -> Sublime Text2 -> PhpStorm

    10多年前最一开始写PHP程序的时候是用windows自带的notepad,现在想来真的很屌丝. 后来经人推荐换成了notepad++,感觉还是相当不错的(中间还用过一阵子editplus). 比较喜 ...

  7. Ibatis动态拼装sql,常用标签总结及举栗子。

    今天得到项目经理一项任务,就是拼装sql,第一次见到,不是太懂,赶紧回来睡一觉再说,由于这次的项目orm使用的是ibatis框架,所以需要使用动态拼装sql,或者是ognl语言,这门语言不是专属于ib ...

  8. Go语言http包Form解析之坑

    最近正在用Go语言做一个项目,今天在用http包读取客户端发过来的POST数据时遇到了一点小麻烦,就下面这段代码,死活读不到数据: { var body []byte nRead, err := r. ...

  9. centos 6 安装 gitlib

    安装gitlab-----------1. 下载 gitlabcurl -O https://downloads-packages.s3.amazonaws.com/centos-6.5/gitlab ...

  10. Github注册过程

      一 github注册过程: 1.首先百度github官网,进入官网页面 2.在该页面分别输入昵称,昵称需要不和别人的重复,而后输入邮箱地址,该邮箱不能注册过这个网站,最后输入密码,密码至少要有七个 ...