GWAS Simulation
comvert hmp to ped1, ped2, map file
SB1.ped, SB2.ped, SB.map
1, choose 20 markers for 30 times
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect)
python ../choose_multi-markers.py SB.imputed.916.filtered.hmp 20 30 marker pheno
2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh
3, copy SB.map to 30 different SB-*.map
python ../CPmapTOmore.py 30 SB-
4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 6 < PLINK.cmd
5, run gemma
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 6 < gemma.cmd
Calculate FDR value:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR)
1, shuffle pheno1.txt to 100 pheno*.txt
python ../shufflePheno.py pheno3.txt 100 pheno-shuffled
2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 100 > combine.sh
parallel -j 100 < combine.sh
3, copy SB.map to 100 different SB-shuffle*.map
python ../CPmapTOmore.py 100 SB-shuffle-
4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 100 SB-shuffle- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 10 < PLINK.cmd
5, run gemma
python ../generateGemmaCmd.py 100 SB-shuffle- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 10 < gemma.cmd
6, calsulate FDR
cd output
python ../../calculateFDR.py SB-shuffle- 100 results.txt
Calculate average Power:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/output)
python ../../calPower.py SB- marker 30 /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR/output/results.txt SB-
python ../../calAveragePower.py SB-
generage new effect 0.9+8
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect)
ln -s /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/markers-new* .
ln -s ../Imputed/SB.imputed.916.filtered.hmp .
python ../newEffect.py SB.imputed.916.filtered.hmp markers-new 30
事实证明:
平均数取8, 20, 100 模拟结果一样
effect value 取0.9 和0.9*20 结果也一样,
表面结果不同是由于FDR不同导致的。
观察average power in different MAF region:
WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect20/output
python ../../DrawHist20Markers.py

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100/output
$ python ../../DrawHist5Markers.py

可以看到随着MAF增大, power上升。从以上两图也可以推测出整体的MAF分布,多数markers都在0.01-0.1之间。
整体分布:
WD: /share/bioinfo/miaochenyong/GWAS/SB/Imputed
python ../DrawMAFHist.py SB.imputed.916.filtered.hmp

增加遗传率:
WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100
python ../genHeritability.py pheno9.txt 0.7 pheno9-0.7H.txt

上图是5个markers, 发现很多个体有相同的表型,对20个makers的进行作图:
一样的表型很少。


calculate average power of various heritability:
1,generate new phenotype data containing heritability
cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100
python ../genHeriPheno.py pheno 30 0.7 phenoH0.7-
cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100-0.7H
mv /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/phenoH0.7-* .
cp /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/marker* .
python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh
python ../CPmapTOmore.py 30 SB-
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
parallel -j 6 < PLINK.cmd
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
parallel -j 6 < gemma.cmd
Statistical results in Sorghum:

统计结果图:


MAF distribution in Seteria Italic:
python DrawMAFHist.py Seteria.imputed.GT.txt

发现小于0.05的基本没有,应该是被过滤掉了。
去除SB和SI中MAF 小于0.05的markers!
Transfer SI GT format to HMP format(SI directory):
python GT2HMP.py Seteria.imputed.GT.txt Seteria.imputed.hmp
SI 有726080 个markers
WD: SB_VS_SI/
python FilterMAF.py SB.imputed.916.filtered.hmp SB.filteredMAF.hmp SB剩余198629 markers
python FilterMAF.py Seteria.imputed.hmp Seteria.filteredMAF.hmp SI剩余725588 markers
重新画MAF分布图 看两者是否相近,相近的话随机选择marker!
SB MAF filtered:

SI MAF filtered:

select 198629 markers randomly from 725588 markers in SI:
python selectMarkers.py SI.filteredMAF.hmp 198629 SI.filteredMAF198629.hmp
重新做分布图:

cmiao
UNL
beadle center
GWAS Simulation的更多相关文章
- causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation
先读几篇文章: Interpretation of Association Signals and Identification of Causal Variants from Genome-wide ...
- GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing
现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...
- GWAS Catalog数据库简介
GWAS Catalog The NHGRI-EBI Catalog of published genome-wide association studies EBI负责维护的一个收集已发表的GWAS ...
- 【GWAS文献】基于GWAS与群体进化分析挖掘大豆相关基因
Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improv ...
- Gate level Simulation(门级仿真)
1 什么是后仿真? 后仿真也成为时序仿真,门级仿真,在芯片布局布线后将时序文件SDF反标到网标文件上,针对带有时序信息的网标仿真称为后仿真. 2 后仿真是用来干嘛的? 检查电路中的timing vio ...
- fdtd simulation, plotting with gnuplot, writting in perl
# 9月13日 于成都黄龙溪 1 #!/usr/bin/perl # Author : Leon Email: yangli0534@gmail.com # fdtd simulation , plo ...
- 【转载】PMC/PEC Boundary Conditions and Plane Wave Simulation
原文链接 PMC/PEC Boundary Conditions and Plane Wave Simulation (FDTD) OptiFDTD now has options to use Pe ...
- dipole antenna simulation by CST
CST偶极子天线仿真,半波振子天线 一.本文使用CST仿真频率为1GHz的偶极子天线,使用2013版本.仿真的步骤为 1.选择一个CST的天线工程模板 2.设置好默认的单位 3.设置背景的材料(空气腔 ...
- Logic and Fault simulation
fault simulation是指对fault circuit的simulation,来locate manufacturing defects并且进行fault diagnosis. logic ...
随机推荐
- spark发行版笔记4Spark Streaming事务处理彻底掌握
Spark Streaming事务处理彻底掌握 感谢DT大数据梦工厂支持提供以下内容,DT大数据梦工厂专注于Spark发行版定制. 内容概括: 1Exactly once 2 输出不重复 1 正如银行 ...
- Spring事务管理器的应对
Spring抽象的DAO体系兼容多种数据访问技术,它们各有特色,各有千秋.像Hibernate是非常优秀的ORM实现方案,但对底层SQL的控制不太方便:而iBatis则通过模板化技术让你方便地控制SQ ...
- Python学习07——字典(2)
笨办法学Python第40节,上次用的第三版的书,这次是第四版的书. 这一节的代码如下: cities = {'CA':'San Francisco', 'MI':'Detroit', 'FL':'J ...
- 笔记:linux下mysql设置utf-8编码方法
一:查看mysql版本 1.1 mysql –V 在终端界面输入上面命令.显示如下: mysql Ver 14.14 Distrib 5.5.35, fordebian-linux-gnu (x86_ ...
- sasasa
/***************************************************************************************** 文件:app_to ...
- textbox只能输入数字或中文的常用正则表达式和验证方法
验证数字的正则表达式集 验证数字:^[0-9]*$ 验证n位的数字:^\d{n}$ 验证至少n位数字:^\d{n,}$ 验证m-n位的数字:^\d{m,n}$ 验证零和非零开头的数字:^(0|[1-9 ...
- C++模拟C#事件委托机制(一)
原文来自于http://www.cnblogs.com/netssfy/articles/1652671.html 写了一段时间的C#代码后确实发现C#的事件委托非常好用.于是便想是否在C++中也能如 ...
- Tomcat配置错误导致Quartz执行两次问题
以下基于tomcat服务器 我们通常将域名映射到指定服务器的端口上,以通过域名直接访问服务,如http://www.abc.com域名已绑定到本机的80端口,项目名wechat,则直接访问http:/ ...
- JDK动态代理与CGLib动态代理
1.JDK动态代理 JDK1.3以后java提供了动态代理技术,允许开发者在运行期创建接口的代理实例,动态代理是实现AOP的绝好底层技术. JDK的动态代理主要涉及到java.lang.reflect ...
- 个人对sort()排序方法中比较函数一直很混乱,今日理清
需求:使用随机数来打印出0-10,并排序. 代码: var a = new Array();var testArray = function() { while (1) { var b = parse ...