GWAS Simulation
comvert hmp to ped1, ped2, map file
SB1.ped, SB2.ped, SB.map
1, choose 20 markers for 30 times
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect)
python ../choose_multi-markers.py SB.imputed.916.filtered.hmp 20 30 marker pheno
2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh
3, copy SB.map to 30 different SB-*.map
python ../CPmapTOmore.py 30 SB-
4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 6 < PLINK.cmd
5, run gemma
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 6 < gemma.cmd
Calculate FDR value:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR)
1, shuffle pheno1.txt to 100 pheno*.txt
python ../shufflePheno.py pheno3.txt 100 pheno-shuffled
2, combine pheno, ped1, ped2 to intact ped file
python ../genCombine.py phenoPrefix 100 > combine.sh
parallel -j 100 < combine.sh
3, copy SB.map to 100 different SB-shuffle*.map
python ../CPmapTOmore.py 100 SB-shuffle-
4, *map, *ped to *bed, *bim, *fam
python ../generatePLINKcmd.py 100 SB-shuffle- > PLINK.cmd
chmod 777 PLINK.cmd
parallel -j 10 < PLINK.cmd
5, run gemma
python ../generateGemmaCmd.py 100 SB-shuffle- > gemma.cmd
chmod 777 gemma.cmd
parallel -j 10 < gemma.cmd
6, calsulate FDR
cd output
python ../../calculateFDR.py SB-shuffle- 100 results.txt
Calculate average Power:
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/output)
python ../../calPower.py SB- marker 30 /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect-FDR/output/results.txt SB-
python ../../calAveragePower.py SB-
generage new effect 0.9+8
(WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect)
ln -s /share/bioinfo/miaochenyong/GWAS/SB/20Markers-1To5Effect/markers-new* .
ln -s ../Imputed/SB.imputed.916.filtered.hmp .
python ../newEffect.py SB.imputed.916.filtered.hmp markers-new 30
事实证明:
平均数取8, 20, 100 模拟结果一样
effect value 取0.9 和0.9*20 结果也一样,
表面结果不同是由于FDR不同导致的。
观察average power in different MAF region:
WD: /share/bioinfo/miaochenyong/GWAS/SB/20Markers-0.9Effect20/output
python ../../DrawHist20Markers.py

WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100/output
$ python ../../DrawHist5Markers.py

可以看到随着MAF增大, power上升。从以上两图也可以推测出整体的MAF分布,多数markers都在0.01-0.1之间。
整体分布:
WD: /share/bioinfo/miaochenyong/GWAS/SB/Imputed
python ../DrawMAFHist.py SB.imputed.916.filtered.hmp

增加遗传率:
WD: /share/bioinfo/miaochenyong/GWAS/SB/5Markers-0.9Effect100
python ../genHeritability.py pheno9.txt 0.7 pheno9-0.7H.txt

上图是5个markers, 发现很多个体有相同的表型,对20个makers的进行作图:
一样的表型很少。


calculate average power of various heritability:
1,generate new phenotype data containing heritability
cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100
python ../genHeriPheno.py pheno 30 0.7 phenoH0.7-
cd /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100-0.7H
mv /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/phenoH0.7-* .
cp /share/bioinfo/miaochenyong/GWAS/SB/5Markers-1To5Effect100/marker* .
python ../genCombine.py phenoPrefix 30 > combine.sh
parallel -j 30 < combine.sh
python ../CPmapTOmore.py 30 SB-
python ../generatePLINKcmd.py 30 SB- > PLINK.cmd
parallel -j 6 < PLINK.cmd
python ../generateGemmaCmd.py 30 SB- > gemma.cmd
parallel -j 6 < gemma.cmd
Statistical results in Sorghum:

统计结果图:


MAF distribution in Seteria Italic:
python DrawMAFHist.py Seteria.imputed.GT.txt

发现小于0.05的基本没有,应该是被过滤掉了。
去除SB和SI中MAF 小于0.05的markers!
Transfer SI GT format to HMP format(SI directory):
python GT2HMP.py Seteria.imputed.GT.txt Seteria.imputed.hmp
SI 有726080 个markers
WD: SB_VS_SI/
python FilterMAF.py SB.imputed.916.filtered.hmp SB.filteredMAF.hmp SB剩余198629 markers
python FilterMAF.py Seteria.imputed.hmp Seteria.filteredMAF.hmp SI剩余725588 markers
重新画MAF分布图 看两者是否相近,相近的话随机选择marker!
SB MAF filtered:

SI MAF filtered:

select 198629 markers randomly from 725588 markers in SI:
python selectMarkers.py SI.filteredMAF.hmp 198629 SI.filteredMAF198629.hmp
重新做分布图:

cmiao
UNL
beadle center
GWAS Simulation的更多相关文章
- causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation
先读几篇文章: Interpretation of Association Signals and Identification of Causal Variants from Genome-wide ...
- GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing
现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...
- GWAS Catalog数据库简介
GWAS Catalog The NHGRI-EBI Catalog of published genome-wide association studies EBI负责维护的一个收集已发表的GWAS ...
- 【GWAS文献】基于GWAS与群体进化分析挖掘大豆相关基因
Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improv ...
- Gate level Simulation(门级仿真)
1 什么是后仿真? 后仿真也成为时序仿真,门级仿真,在芯片布局布线后将时序文件SDF反标到网标文件上,针对带有时序信息的网标仿真称为后仿真. 2 后仿真是用来干嘛的? 检查电路中的timing vio ...
- fdtd simulation, plotting with gnuplot, writting in perl
# 9月13日 于成都黄龙溪 1 #!/usr/bin/perl # Author : Leon Email: yangli0534@gmail.com # fdtd simulation , plo ...
- 【转载】PMC/PEC Boundary Conditions and Plane Wave Simulation
原文链接 PMC/PEC Boundary Conditions and Plane Wave Simulation (FDTD) OptiFDTD now has options to use Pe ...
- dipole antenna simulation by CST
CST偶极子天线仿真,半波振子天线 一.本文使用CST仿真频率为1GHz的偶极子天线,使用2013版本.仿真的步骤为 1.选择一个CST的天线工程模板 2.设置好默认的单位 3.设置背景的材料(空气腔 ...
- Logic and Fault simulation
fault simulation是指对fault circuit的simulation,来locate manufacturing defects并且进行fault diagnosis. logic ...
随机推荐
- <java基础学习>02JAVA的基础组成(2)
60000-0000 0000-0000 0000-0000 0000-0110 0000-0110 -6这个数的正数的二进制取反,再加1 0000-0110取反: 1111-1001 + 0000- ...
- Xcode8 上架前属性列表添加权限
需要注意的是,权限的string,也就是提示语句也要设置,都设置好之后,一次就上传成功,可以添加构建版本了. <key>NSBluetoothPeripheralUsageDescr ...
- node.js中buffer需要知道的一些点
本文为阅读朴灵大大的<深入浅出node.js>笔记: 在前端开发的时候,我们不曾用过buffer,也没得用.buffer是node环境引入的,用来方便应对二进制数据的处理.这里我们对它应该 ...
- XML特殊字符处理
XML共有5个特殊字符,分别为:&<>"' 如果XML文件中需要包含如上5个特殊字符,有两种方式: 1.将包含特殊字符的字符串放在<![CDATA[]]>中 ...
- linux内核学习之七 可执行程序的装载和运行
一 程序的装载和运行的基本知识补充 1 当进程开始执行一个新的程序时,从父进程继承的所有页被释放,以便在新的用户地址空间开始执行新的计算,甚至进程的特权都可能发生改变,但是,进程的PID不会改变 ...
- 我的PHP编程环境变迁:notepad -> notepad++ -> Sublime Text2 -> PhpStorm
10多年前最一开始写PHP程序的时候是用windows自带的notepad,现在想来真的很屌丝. 后来经人推荐换成了notepad++,感觉还是相当不错的(中间还用过一阵子editplus). 比较喜 ...
- Ibatis动态拼装sql,常用标签总结及举栗子。
今天得到项目经理一项任务,就是拼装sql,第一次见到,不是太懂,赶紧回来睡一觉再说,由于这次的项目orm使用的是ibatis框架,所以需要使用动态拼装sql,或者是ognl语言,这门语言不是专属于ib ...
- Go语言http包Form解析之坑
最近正在用Go语言做一个项目,今天在用http包读取客户端发过来的POST数据时遇到了一点小麻烦,就下面这段代码,死活读不到数据: { var body []byte nRead, err := r. ...
- centos 6 安装 gitlib
安装gitlab-----------1. 下载 gitlabcurl -O https://downloads-packages.s3.amazonaws.com/centos-6.5/gitlab ...
- Github注册过程
一 github注册过程: 1.首先百度github官网,进入官网页面 2.在该页面分别输入昵称,昵称需要不和别人的重复,而后输入邮箱地址,该邮箱不能注册过这个网站,最后输入密码,密码至少要有七个 ...