Floyd算法(一)之 C语言详解
本章介绍弗洛伊德算法。和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。
目录
1. 弗洛伊德算法介绍
2. 弗洛伊德算法图解
3. 弗洛伊德算法的代码说明
4. 弗洛伊德算法的源码转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
弗洛伊德算法介绍
和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
基本思想
通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。 接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" > "a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。 同理,第k次更新时,如果"a[i][j]的距离" > "a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!
单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
弗洛伊德算法图解

以上图G4为例,来对弗洛伊德进行算法演示。

初始状态:S是记录各个顶点间最短路径的矩阵。
第1步:初始化S。
矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。实际上,就是将图的原始矩阵复制到S中。
注:a[i][j]表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
第2步:以顶点A(第1个顶点)为中介点,若a[i][j] > a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。
以顶点a[1]6,上一步操作之后,a[1][6]=∞;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为26。
同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]的大小。
弗洛伊德算法的代码说明
以"邻接矩阵"为例对弗洛伊德算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。
1. 基本定义
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
2. 弗洛伊德算法
/*
* floyd最短路径。
* 即,统计图中各个顶点间的最短路径。
*
* 参数说明:
* G -- 图
* path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
* dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
*/
void floyd(Graph G, int path[][MAX], int dist[][MAX])
{
int i,j,k;
int tmp;
// 初始化
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
dist[i][j] = G.matrix[i][j]; // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
path[i][j] = j; // "顶点i"到"顶点j"的最短路径是经过顶点j。
}
}
// 计算最短路径
for (k = 0; k < G.vexnum; k++)
{
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
if (dist[i][j] > tmp)
{
// "i到j最短路径"对应的值设,为更小的一个(即经过k)
dist[i][j] = tmp;
// "i到j最短路径"对应的路径,经过k
path[i][j] = path[i][k];
}
}
}
}
// 打印floyd最短路径的结果
printf("floyd: \n");
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
printf("%2d ", dist[i][j]);
printf("\n");
}
}
弗洛伊德算法的源码
这里分别给出"邻接矩阵图"和"邻接表图"的弗洛伊德算法源码。
Floyd算法(一)之 C语言详解的更多相关文章
- Dijkstra算法(一)之 C语言详解
本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...
- Prim算法(一)之 C语言详解
本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...
- Kruskal算法(一)之 C语言详解
本章介绍克鲁斯卡尔算法.和以往一样,本文会先对克鲁斯卡尔算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3 ...
- 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)
一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...
- Java Web----EL(表达式语言)详解
Java Web中的EL(表达式语言)详解 表达式语言(Expression Language)简称EL,它是JSP2.0中引入的一个新内容.通过EL可以简化在JSP开发中对对象的引用,从而规范页面 ...
- 二分算法题目训练(二)——Exams详解
CodeForces732D——Exams 详解 Exam 题目描述(google翻译) Vasiliy的考试期限将持续n天.他必须通过m门科目的考试.受试者编号为1至m. 大约每天我们都知道当天可以 ...
- 最短路径——floyd算法代码(c语言)
最短路径问题 昨天自己试了试写一下dijkstra的算法博客 dijkstra链接在这← 今天来更floyd算法,感觉非常简单果然暴力才是解决一切的王道 一.总体思想 floyd算法就是每一次从邻接矩 ...
- Kruskal算法 - C语言详解
最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的连通网可以有多棵权值总 ...
- 拓扑排序(一)之 C语言详解
本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...
随机推荐
- linux(centos)源码安装git
最近使用一个开源库,部署的的时候需要用git克隆依赖库.刚好系统没安装git.就尝试了源码安装git. 源码下载地址:http://codemonkey.org.uk/projects/git-sna ...
- Canny边缘检测及图像缩放之图像处理算法-OpenCV应用学习笔记四
在边缘检测算法中Canny颇为经典,我们就来做一下测试,并且顺便实现图像的尺寸放缩. 实现功能: 直接执行程序得到结果如下:将载入图像显示在窗口in内,同时进行图像两次缩小一半操作将结果显示到i1,i ...
- Mac OS 中 安装配置软件
1. (2014.1.22) 配置Apache + PHP + MySQL: http://dancewithnet.com/2010/05/09/run-apache-php-mysql-in-ma ...
- Perst常用命令
Perst我使用的版本是4, 几乎支持所有的.net环境, 而且效率很高,比较稳定. 使用方法: 1:引用相应dll 2: 创建数据结构 public class Cp_struct : Persis ...
- Blend 2015 教程 (三) 模板
前一篇讲述了一些基本样式的修改方法,并搭建了Style层的基本框架,本篇将进一步修改ListBox的样式. 1. 首先选中ListBox控件,在美工板导航栏中点击ListBox,选择 编辑其他模板-编 ...
- 示例篇-购物车的简单示例和自定义JS
简介: 支持平台: Android4.0,iOS7.0,Windows 10, Windows 10 mobile 说明:主要是演示listview所在的ui和模板cell所在的ui之间数据的交互,点 ...
- Windows UDP socket recvfrom返回10054错误的解决办法
现象: 在Windows 7系统上,A使用UDP socket,调用sendto函数向一个目标地址B发送数据,但是目标地址B没有接收数据,如果A此时立即调用recvfrom试图接收目标地址B发回的数据 ...
- Windows内存小结
以前写过一篇理解程序内存, 当时主要是针对用户态,下面再稍微深入一点: 我们以32位程序为例(不启用AWE), 总共4G虚拟空间,其中低2G属于用户态, 高2G属于操作系统内核, 每个程序都有自己的低 ...
- iOS——Core Animation 知识摘抄(四)
原文地址http://www.cocoachina.com/ios/20150106/10840.html 延迟解压 一旦图片文件被加载就必须要进行解码,解码过程是一个相当复杂的任务,需要消耗非常长的 ...
- vs2013中的“任务列表”菜单
以前在java项目中经常用到todo. 现在vs2013也完美支持了. 首先,对于目前不确定而尚需完善的代码,在前面加 //TODO:by who --注释文字,比如: //TODO:lhl--类目I ...