Luogu 3396 权值分块
官方题解:这是一道论文题。集训队论文《根号算法——不只是分块》。
首先,题目要我们求的东西,就是下面的代码:
for(i=k;i<=n;i+=p)
ans+=value[i];
即:从 k开始,每隔p个数取一个数,求它们的和。
这个算法的复杂度是的。
令答案为,表示模数是p,余数是k.
那么,对于第i个数,如何处理它对ans的贡献呢?
for(p=1;p<=n;p++) //枚举模数
ans[p][i%p]+=value[i]; //处理对应的贡献
这样看上去很妙的样子,然而的预处理,
询问,空间复杂度还是
的
所以我们很自然地想到:只处理以内的p
这样的话,令 ,则可以这样预处理:
for(p=1;p<=size;p++) //只枚举[1,size]中的
ans[p][i%p]+=value[] //处理对应的贡献
于是预处理的复杂度降到了 .
接着考虑询问。如果询问的p<size ,那显然可以给出回答。
如果p超过size,我们就暴力统计并回答。因为 ,所以少于
个数对答案有贡献。所以对于
,暴力统计的复杂度是
..
接着考虑修改。显然我们把p<size的值全都更新一遍就行。复杂度也是 .
void change(int i,int v) //将value[i]改为v
{
for(p=1;p<=size;p++)
ans[p][i%p]=ans[p][i%p]-value[i]+v; //更新答案
value[i]=v; //更新value数组
}
这样,我们就在.的时间内完成了任务
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
const int Maxn=;
const int Sqrt=;
int n,m,Block,a[Sqrt][Sqrt],x,y,v[Maxn];
int main()
{
scanf("%d%d",&n,&m); Block=(int)sqrt(n);
for (int i=;i<=n;i++) scanf("%d",&v[i]);
memset(a,,sizeof(a));
for (int i=;i<=Block;i++)
for (int j=;j<=n;j++) a[i][j%i]+=v[j];
for (int i=;i<=m;i++)
{
char ch=getchar();
while (ch!='A' && ch!='C') ch=getchar();
scanf("%d%d",&x,&y);
if (ch=='A')
{
if (x<=Block) printf("%d\n",a[x][y]); else
{
int Ret=; for (int i=y;i<=n;i+=x) Ret+=v[i]; printf("%d\n",Ret);
}
}
if (ch=='C')
{
for (int i=;i<=Block;i++)
a[i][x%i]=a[i][x%i]-v[x]+y;
v[x]=y;
}
}
return ;
}
C++
其实这道题因为数据弱暴力都能过
Luogu 3396 权值分块的更多相关文章
- 2019.01.08 bzoj3809: Gty的二逼妹子序列(莫队+权值分块)
传送门 题意:多组询问,问区间[l,r]中权值在[a,b]间的数的种类数. 看了一眼大家应该都知道要莫队了吧. 然后很容易想到用树状数组优化修改和查询做到O(mnlogamax)O(m\sqrt nl ...
- 2018.11.07 NOIP训练 L的鞋子(权值分块+莫队)
传送门 乱搞题. 我直接对权值分块+莫队水过了. 不过调了30min30min30min发现ststst表挂了是真的不想说什么233. 代码
- 【莫队算法】【权值分块】bzoj3920 Yuuna的礼物
[算法一] 暴力. 可以通过第0.1号测试点. 预计得分:20分. [算法二] 经典问题:区间众数,数据范围也不是很大,因此我们可以: ①分块,离散化,预处理出: <1>前i块中x出现的次 ...
- 【莫队算法】【权值分块】bzoj3585 mex
orz PoPoQQQ. 本来蒟蒻以为这种离散化以后就对应不起来的题不能权值分块搞的说. ……结果,实际上>n的权值不会对答案作出贡献. #include<cstdio> #incl ...
- 【带修莫队】【权值分块】bzoj3196 Tyvj 1730 二逼平衡树
这题用了三种算法写: 分块+二分:O(n*sqrt(n*log(n)) 函数式权值分块:O(n*sqrt(n)) 带修莫队+权值分块:O(n5/3) 结果……复杂度越高的实际上跑得越快……最后这个竟然 ...
- 【树链剖分】【函数式权值分块】bzoj1146 [CTSC2008]网络管理Network
裸题,直接上.复杂度O(n*sqrt(n)*log(n)). //Num[i]表示树中的点i在函数式权值分块中对应的点 //Map[i]表示函数式权值分块中的点i在树中对应的点 #include< ...
- 【莫队算法】【权值分块】bzoj2223 [Coci 2009]PATULJCI
不带修改主席树裸题<=>莫队+权值分块裸题. 复杂度O(m*sqrt(n)). P.S.题目描述坑爹,第二个数是权值的范围. #include<cstdio> #include ...
- 【函数式权值分块】【分块】bzoj3196 Tyvj 1730 二逼平衡树
#include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define ...
- 【函数式权值分块】【块状链表】bzoj3065 带插入区间K小值
显然是块状链表的经典题.但是经典做法的复杂度是O(n*sqrt(n)*log^2(n))的,出题人明确说了会卡掉. 于是我们考虑每个块内记录前n个块的权值分块. 查询的时候差分什么的,复杂度就是O(n ...
随机推荐
- c#解压文件
今天做了一个异步上传文件后再直接解压的一个东西.到解压这找了好多资料,做了1个多小时,贴出来,给自己张张记性. HttpPostedFileBase imgFile = Request.Files[0 ...
- POJ 3414 Pots
Pots Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status ...
- 【lattice软核】ROM的使用
=======================>>>>> 一.ROM核调用:==================>>>>> ======== ...
- 转别人的 STM32外部中断使用注意事项
前言:这些问题都是我之前在工作中遇到的,后来觉得需要总结,自己记忆不好,所以在这个给自己打个mark. 一:触发方式 STM32 的外部中断是通过边沿来触发的,不支持电平触发: 二:外部中断分组 ST ...
- 【转载】桥接Microsoft Word和浏览器
原文链接地址: http://www.infoq.com/cn/articles/convert-microsoft-word-to-html?utm_campaign=rightbar_v2& ...
- jdbc调用存储过程和函数
1.调用存储过程 public class CallOracleProc { public static void main(String[] args) throws Exception{ Stri ...
- 【PHP】分页条函数封装
这两天在学习PHP 想做一个前端后台都包含的网站 看了一些视频发现大牛们都是将封装起来实现代码的重用性 本人技拙也写了个分页条函数的封装 分页条在用PHP网站开发中十分常用 通过封装代码来提高网站开发 ...
- iOS中真机连接电脑运行程序出现问题
- ubuntu关于apache服务命令
一.Start Apache 2 Server /启动apache服务 # /etc/init.d/apache2 startor$ sudo /etc/init.d/apache2 start 二. ...
- Win环境下的文件读写
在win环境下,有许多方法可以对文件进行读写操作,如MFC 中的CFile类,及一些开源的项目如QT中的QFile.开源的好得是可以多平台,而MFC只是微软自家的东西,对于想写跨平台的人,最好不用MF ...