HDU 5925 Coconuts 离散化
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5925
Coconuts
Time Limit: 9000/4500 MS (Java/Others)Memory Limit: 65536/65536 K (Java/Others)
#### 问题描述
> TanBig, a friend of Mr. Frog, likes eating very much, so he always has dreams about eating. One day, TanBig dreams of a field of coconuts, and the field looks like a large chessboard which has R rows and C columns. In every cell of the field, there is one coconut. Unfortunately, some of the coconuts have gone bad. For sake of his health, TanBig will eat the coconuts following the rule that he can only eat good coconuts and can only eat a connected component of good coconuts one time(you can consider the bad coconuts as barriers, and the good coconuts are 4-connected, which means one coconut in cell (x, y) is connected to (x - 1, y), (x + 1, y), (x, y + 1), (x, y - 1).
>
> Now TanBig wants to know how many times he needs to eat all the good coconuts in the field, and how many coconuts he would eat each time(the area of each 4-connected component).
#### 输入
> The first line contains apositiveinteger T(T≤10) which denotes the test cases. T test cases begin from the second line. In every test case, the first line contains two integers R and C, 0
> It is guaranteed that in the input data, the first row and the last row will not have bad coconuts at the same time, the first column and the last column will not have bad coconuts at the same time.
输出
For each test case, output "Case #x:" in the first line, where x denotes the number of test case, one integer k in the second line, denoting the number of times TanBig needs, in the third line, k integers denoting the number of coconuts he would eat each time, you should output them in increasing order.
样例输入
2
3 3
2
1 2
2 1
3 3
1
2 2
样例输出
Case #1:
2
1 6
Case #2:
1
8
题意
给你一个n*m的网格,问障碍物把网格分割成多少个连通块,按从大到小的顺序输出每个连通块的大小。
题解
由于障碍就200多个,我们对障碍物离散化下,因为离散化不会影响被障碍物包围起来的连通块,所以离散化之后我们只统计被包围的那些(一个点事障碍物,要把它周围的点也离散化,否则会出现本来没被围起来的被围了),然后最后再算出外围的大块。
注意:在边缘的被分割开的连通块需要特殊处理下,这需要用到题目里面的一个提示:“the first row and the last row will not have bad coconuts at the same time, the first column and the last column will not have bad coconuts at the same time.”。我们标记下四周的状态,就可以判断我们统计的块是不是被夹在角落,还是离散化之后伪的被夹在角落。
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=222;
int R,C,n,nn,mm;
PII pt[maxn];
int vis[maxn][maxn];
const int dx[]= {-1,1,0,0};
const int dy[]= {0,0,-1,1};
bool _flag[4];
LL bfs(int xs,int ys) {
queue<PII> Q;
LL res=1;
vis[xs][ys]=1;
Q.push(mkp(xs,ys));
int flag=0;
while(!Q.empty()) {
PII u=Q.front();
Q.pop();
int x=u.X,y=u.Y;
for(int i=0; i<4; i++) {
int nx=x+dx[i];
int ny=y+dy[i];
if(nx<1||nx>nn||ny<1||ny>mm) {
if(nx<1&&_flag[0]==0) flag=1;
if(nx>nn&&_flag[1]==0) flag=1;
if(ny<1&&_flag[2]==0) flag=1;
if(ny>mm&&_flag[3]==0) flag=1;
continue;
}
if(!vis[nx][ny]) {
vis[nx][ny]=1;
res++;
Q.push(mkp(nx,ny));
}
}
}
if(flag) return 0;
return res;
}
int main() {
int tc,kase=0;
scf("%d",&tc);
while(tc--) {
scf("%d%d%d",&R,&C,&n);
VI ha_x,ha_y;
clr(_flag,0);
rep(i,0,n) {
scf("%d%d",&pt[i].X,&pt[i].Y);
//标记四周的状态,用于判断被围在边缘的情况
if(pt[i].X==1) _flag[0]=1;
if(pt[i].X==R) _flag[1]=1;
if(pt[i].Y==1) _flag[2]=1;
if(pt[i].Y==C) _flag[3]=1;
//离散化
if(pt[i].X-1>=1) ha_x.pb(pt[i].X-1);
ha_x.pb(pt[i].X);
if(pt[i].X+1<=R) ha_x.pb(pt[i].X+1);
if(pt[i].Y-1>=1) ha_y.pb(pt[i].Y-1);
ha_y.pb(pt[i].Y);
if(pt[i].Y+1<=C) ha_y.pb(pt[i].Y+1);
}
//离散化
sort(all(ha_x));
ha_x.erase(unique(all(ha_x)),ha_x.end());
sort(all(ha_y));
ha_y.erase(unique(all(ha_y)),ha_y.end());
nn=ha_x.sz();
mm=ha_y.sz();
//外围的那个联通块
LL Ma=(LL)R*C-n;
vector<LL> ans;
//离散化
clr(vis,0);
rep(i,0,n) {
pt[i].X=lower_bound(all(ha_x),pt[i].X)-ha_x.begin()+1;
pt[i].Y=lower_bound(all(ha_y),pt[i].Y)-ha_y.begin()+1;
vis[pt[i].X][pt[i].Y]=1;
}
prf("Case #%d:\n",++kase);
LL sum=0;
//对于离散化的图暴力bfs
for(int i=1; i<=nn; i++) {
for(int j=1; j<=mm; j++) {
if(!vis[i][j]) {
LL res=bfs(i,j);
if(res) {
sum+=res;
ans.pb(res);
}
}
}
}
Ma-=sum;
if(Ma) ans.pb(Ma);
sort(all(ans));
prf("%d\n",ans.sz());
rep(i,0,ans.sz()) {
prf("%lld",ans[i]);
if(i==ans.sz()-1) prf("\n");
else prf(" ");
}
}
return 0;
}
//end-----------------------------------------------------------------------
/*
222
4 4
4
1 2
2 1
2 3
3 2
7 7
4
3 4
4 3
4 5
5 4
*/
HDU 5925 Coconuts 离散化的更多相关文章
- hdu 5925 Coconuts 离散化+dfs
Coconuts Time Limit: 9000/4500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem ...
- HDU 5925 Coconuts 【离散化+BFS】 (2016CCPC东北地区大学生程序设计竞赛)
Coconuts Time Limit: 9000/4500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
- HDU 5925 Coconuts
2016 CCPC 东北四省赛 D. 一道好题. 现场写崩了. 赛后LSh跟我讲了一种离散化的做法, 没听懂. 题意 一个\(R \cdot C\ (R, C\le 10^9)\) 的矩形点阵上有 $ ...
- Coconuts HDU - 5925 (二维离散化求连通块的个数以及大小)
题目链接: D - Coconuts HDU - 5925 题目大意:首先是T组测试样例,然后给你n*m的矩阵,原先矩阵里面都是白色的点,然后再输入k个黑色的点.这k个黑色的点可能会使得原先白色的点 ...
- Coconuts HDU - 5925 二维离散化 自闭了
TanBig, a friend of Mr. Frog, likes eating very much, so he always has dreams about eating. One day, ...
- HDU 5925 离散化
东北赛的一道二等奖题 当时学长想了一个dfs的解法并且通过了 那时自己也有一个bfs的解法没有拿出来 一直没有机会和时ji间xing来验证对错 昨天和队友谈离散化的时候想到了 于是用当时的思路做了一下 ...
- HDU - 1255 扫描线+离散化进阶
这道题最开始我以为和HDU - 1542 那道题一样,只需要把cover次数改成2次即可,但是后面仔细一想,我们需要求的是覆盖次数大于等于2次的,这样的话,我们需要维护两个长度,HDU-1542 由于 ...
- hdu 5303 DP(离散化,环形)+贪心
题目无法正常粘贴,地址:http://acm.hdu.edu.cn/showproblem.php?pid=5303 大意是给出一个环形公路,和它的长度,给出若干颗果树的位置以及树上的果子个数. 起点 ...
- HDU 1711 kmp+离散化
http://acm.hdu.edu.cn/showproblem.php?pid=1711 Number Sequence Time Limit: 10000/5000 MS (Java/Other ...
随机推荐
- 高并发面试必问:分布式消息系统Kafka简介
转载:https://blog.csdn.net/caisini_vc/article/details/48007297 Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成 ...
- kali linux修改更新源及更新
1.修改sources.list源文件: leafpad /etc/apt/sources.list #aliyun 阿里云 deb http://mirrors.aliyun.com/kali ka ...
- 【转】C++ 枚举类型的思考
转自: http://blog.csdn.net/classfactory/article/details/87749 C++ 中的枚举类型继承于 C 语言.就像其他从 C 语言继承过来的很多特性一样 ...
- 微信小程序:选项卡页面切换
一.功能描述 在同一个页面内实现不同展示页面的切换功能,如下图所示 二.代码实现 1. index.js Page({ /** * 页面的初始数据 */ data: { currentData : 0 ...
- 查看Chrome浏览器扩展程序源码的两种方法
注意:仅在当前最新的版本 55.0.2883.87 m (64-bit)上测试有效 首先获取extensionId: chrome 打开扩展程序页面 chrome://extensions/ 比如我想 ...
- TMS320VC5509串口通信
1. 串口通信使用MCBSP外设的DX1,DRA引脚 很多同学喜欢把这个MCBSP驱动音频芯片TLV320AIC23,同时也作为串口,那么一般用的拨码开关去选择,反正自己看着拨一下 2. 遇到的一个问 ...
- [TJOI2015]概率论[卡特兰数]
题意 \(n\) 个节点二叉树的叶子节点的期望个数. \(n\leq 10^9\) . 分析 实际询问可以转化为 \(n\) 个点的不同形态的二叉树的叶子节点总数. 定义 \(f_n\) 表示 \(n ...
- Open-Drain&Push-Pull
在配置GPIO(General Purpose Input Output)管脚的时候,常会见到两种模式:开漏(open-drain,漏极开路)和推挽(push-pull).对此两种模式,有何区别和联系 ...
- Asp.Net Form验证不通过,重复登录(.net4,4.5form验证兼容性问题)
问题产生根源: 当然,其实应该需要保持线上所有机器环境一致!可是,写了一个小程序.使用的是4.5,aysnc/await实在太好用了,真心不想把代码修改回去. so,动了念头,在这台服务器上装个4.5 ...
- netbeans 类重复 解决
Help -> About -> Cache directory 记录Cache directory目录 删除该目录下的所有文件 重启