题目链接

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:

  1. V' = V.
  2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2

3 3

1 2 1

2 3 2

3 1 3

4 4

1 2 2

2 3 2

3 4 2

4 1 2

Sample Output

3

Not Unique!

分析:

给定一个连通同,我们可以求出这个图的最小生成树,但是问题在于让我们判断这棵最小生成树是不是唯一的。

首先这里涉及到次小生成树,要求次小生成树,我们可以假设T是G的最小生成树,依次枚举T中的边并去掉,再求最小生成树,所得的这些值中的最小值就是次小生成树的值(当然,去掉一条边后,剩下的边能够形成次小生成树)。次小生成树的值可能等于最小生成树,也有可能比最小生成树大。

判断最小生成树是否唯一:

1、对图中每条边,扫描其它边,如果存在相同权值的边,则标记该边。

2、用kruskal或prim求出MST。

3、如果MST中无标记的边,则MST唯一;否则,在MST中依次去掉标记的边,再求MST,若求得MST权值和原来的MST权值相同,则MST不唯一。

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int pre[109];
int first;
struct Node
{
int u,v,w;
int use;//标记最小生成树里面有没有用过这条边
int eq;//标记图中有没有与改变的权值相同的一条边
int del;//标记在求次小生成树的时候删除的那一条边
} node[10009];
bool cmp(Node a,Node b)//按照边的权值排序,权值一样的按照点的大小排序
{
if(a.w!=b.w)
return a.w<b.w;
if(a.u!=b.u)
return a.u<b.u;
return a.v<b.v;
}
int find(int x)//并查集查找父节点
{
if(x!=pre[x])
pre[x]=find(pre[x]);
return pre[x];
}
int kruskal()
{
int ans=0;//生成树的权值
int cnt=0;//生成树中的边的个数
for(int i=1;i<=n;i++)
pre[i]=i;//并查集,将每一个节点所属的集合都看作自身
for(int i=0;i<m;i++)
{
if(cnt==n-1)//已经有n-1条边了,这个生成树就已经确定下来了
break;
if(node[i].del==1)//这个是被删除掉的边
continue;
int f1=find(node[i].u);
int f2=find(node[i].v);
if(f1!=f2)//两个点所属不同的集合
{
if(first==1)//只有第一次构建最小生成树的时候才用标记
node[i].use=1;
pre[f1]=f2;//将两个点放到同一个集合中
ans+=node[i].w;//最小生成树的权值加
cnt++;//边数加
}
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&node[i].u,&node[i].v,&node[i].w);
node[i].del=node[i].eq=node[i].use=0;
}
sort(node,node+m,cmp);
for(int i=0; i<m; i++)//将有相同权值的边标记出来
{
for(int j=i+1; j<m; j++)
if(node[i].w==node[j].w)
node[i].eq=node[j].eq=1;
else break;
}
first=1;//用来标记只有第一次构建最小生成树的时候,才用标记某一条边用过
int ans=kruskal();
first=0;
int i;
for(i=0;i<m;i++)
{
if(node[i].use==1&&node[i].eq==1)//因为要判断最下生成树是否唯一,所以删除掉的那条边必须有个跟它权值一样的才有可能存在
{
node[i].del=1;//标记这条边已经被删除了
if(kruskal()==ans)
{
break;
}
node[i].del=0;//执行完之后总要把标记释放,因为每次都是在最小生成树的基础上进行删边判断的
}
}
if(i<m)
printf("Not Unique\n");
else
printf("%d\n",ans);
}
return 0;
}

当然如果要求次小生成树的话,我们就没有必要来判断是否有权值相同的边,直接将最小生成树里面的边一条一条的删除再用最下生成树之外的一条边来填补就行了。最终求出这些生成树里面的最小值。

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int pre[109];
int first;
struct Node
{
int u,v,w;
int use;//标记最小生成树里面有没有用过这条边
int del;//标记在求次小生成树的时候删除的那一条边
} node[10009];
bool cmp(Node a,Node b)//按照边的权值排序,权值一样的按照点的大小排序
{
if(a.w!=b.w)
return a.w<b.w;
if(a.u!=b.u)
return a.u<b.u;
return a.v<b.v;
}
int find(int x)//并查集查找父节点
{
if(x!=pre[x])
pre[x]=find(pre[x]);
return pre[x];
}
int kruskal()
{
int ans=0;//生成树的权值
int cnt=0;//生成树中的边的个数
for(int i=1; i<=n; i++)
pre[i]=i;//并查集,将每一个节点所属的集合都看作自身
for(int i=0; i<m; i++)
{
if(cnt==n-1)//已经有n-1条边了,这个生成树就已经确定下来了
break;
if(node[i].del==1)//这个是被删除掉的边
continue;
int f1=find(node[i].u);
int f2=find(node[i].v);
if(f1!=f2)//两个点所属不同的集合
{
if(first==1)//只有第一次构建最小生成树的时候才用标记
node[i].use=1;
pre[f1]=f2;//将两个点放到同一个集合中
ans+=node[i].w;//最小生成树的权值加
cnt++;//边数加
}
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&node[i].u,&node[i].v,&node[i].w);
node[i].del=node[i].use=0;
}
sort(node,node+m,cmp);
first=1;//用来标记只有第一次构建最小生成树的时候,才用标记某一条边用过
int ans=kruskal();
first=0;
int Ci=0x3f3f3f3f;
for(int i=0; i<m; i++)
{
if(node[i].use==1)//只要最小生成树里面有这一条边
{
node[i].del=1;//标记这条边已经被删除了
int op=kruskal();
if( op<Ci)
{
Ci=op;
}
node[i].del=0;//执行完之后总要把标记释放,因为每次都是在最小生成树的基础上进行删边判断的
}
}
printf("%d\n",Ci);
}
return 0;
}

POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)的更多相关文章

  1. POJ 1679 The Unique MST (次小生成树)

    题目链接:http://poj.org/problem?id=1679 有t组数据,给你n个点,m条边,求是否存在相同权值的最小生成树(次小生成树的权值大小等于最小生成树). 先求出最小生成树的大小, ...

  2. POJ 1679 The Unique MST (次小生成树kruskal算法)

    The Unique MST 时间限制: 10 Sec  内存限制: 128 MB提交: 25  解决: 10[提交][状态][讨论版] 题目描述 Given a connected undirect ...

  3. poj 1679 The Unique MST (次小生成树(sec_mst)【kruskal】)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 35999   Accepted: 13145 ...

  4. poj 1679 The Unique MST 【次小生成树】【模板】

    题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...

  5. POJ 1679 The Unique MST 【最小生成树/次小生成树模板】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  6. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

  7. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  8. POJ_1679_The Unique MST(次小生成树模板)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23942   Accepted: 8492 D ...

  9. poj 1679 The Unique MST

    题目连接 http://poj.org/problem?id=1679 The Unique MST Description Given a connected undirected graph, t ...

随机推荐

  1. 三星vs苹果 2018Q3 财报 以及国内最赚钱的公司...

    三星文字版为: 10月31日消息,据国外媒体报道,当地时间周三韩国三星电子公布季度财报,得益于市场对其存储芯片和其他零部件的强劲需求,营业利润创下历史新高.三星不仅在自家设备上使用自己生产的芯片,还向 ...

  2. 二分图最大匹配模板(pascal)

    uoj#78. 二分图最大匹配 从前一个和谐的班级,有 nlnl 个是男生,有 nrnr 个是女生.编号分别为 1,…,nl1,…,nl 和 1,…,nr1,…,nr. 有若干个这样的条件:第 vv  ...

  3. 解决Slave SQL线程Waiting for binlog lock

       最近在我们线上库物理备份的时候出现一个奇怪的现象:    我们备份都在从库上备份的,在业务低一般是在晚上2点钟开始备份.有天发现从库的延迟一直在增加,登录上实例,通过show processli ...

  4. 解决MySQL Slave 触发 oom-killer

    最近经常有收到MySQL实例类似内存不足的报警信息,登陆到服务器上一看发现MySQL 吃掉了99%的内存,God ! 有时候没有及时处理,内核就会自己帮我们重启下MySQL,然后我们就可以看到 dme ...

  5. myeclipse8.6 注册码

    MyEclipse8.6 注册码 别处找的均是8.6版本,可以使用到2014年一:MyEclipse Standard Edition: zhucemLR7ZL-655954-695876566190 ...

  6. BZOJ3504 CQOI2014危桥(最大流)

    如果只有一个人的话很容易想到最大流,正常桥连限流inf双向边,危桥连限流2双向边即可.现在有两个人,容易想到给两起点建超源两汇点建超汇,但这样没法保证两个人各自到达自己要去的目的地.于是再超源连一个人 ...

  7. 【刷题】BZOJ 3667 Rabin-Miller算法

    Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如 ...

  8. 网络对抗课题4.3.1 SQL注入原理与实践

    网络对抗课题4.3.1 SQL注入原理与实践 原理 SQL注入漏洞是指在Web应用对后台数据库查询语句处理存在的安全漏洞.也就是,在输入字符串中嵌入SQL指令,在设计程序中忽略对可能构成攻击的特殊字符 ...

  9. 解题:洛谷2257 YY的GCD

    题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...

  10. SSH项目整合

    其实框架的整合无非就是jar包和配置文件: struts2.spring.Hibernate这三个框架,分清楚什么作用就好配置了. jar包我们就不说了,这里看下配置文件吧: struts.xml: ...