What is FLANN?

FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces. It contains a collection of algorithms we found to work best for nearest neighbor search and a system for automatically choosing the best algorithm and optimum parameters depending on the dataset.

FLANN is written in C++ and contains bindings for the following languages: C, MATLAB and Python.

News

  • (14 December 2012) Version 1.8.0 is out bringing incremental addition/reamoval of points to/from indexes
  • (20 December 2011) Version 1.7.0 is out bringing two new index types and several other improvements.
  • You can find binary installers for FLANN on the Point Cloud Library project page. Thanks to the PCL developers!
  • Mac OS X users can install flann though MacPorts (thanks to Mark Moll for maintaining the Portfile)
  • New release introducing an easier way to use custom distances, kd-tree implementation optimized for low dimensionality search and experimental MPI support
  • New release introducing new C++ templated API, thread-safe search, save/load of indexes and more.
  • The FLANN license was changed from LGPL to BSD.
 

How fast is it?

In our experiments we have found FLANN to be about one order of magnitude faster on many datasets (in query time), than previously available approximate nearest neighbor search software.

Publications

More information and experimental results can be found in the following papers:

 
  • Marius Muja and David G. Lowe: "Scalable Nearest Neighbor Algorithms for High Dimensional Data". Pattern Analysis and Machine Intelligence (PAMI), Vol. 36, 2014. [PDF] [BibTeX]
 
 
  • Marius Muja and David G. Lowe: "Fast Matching of Binary Features". Conference on Computer and Robot Vision (CRV) 2012. [PDF] [BibTeX]
 
 
  • Marius Muja and David G. Lowe, "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration", in International Conference on Computer Vision Theory and Applications (VISAPP'09), 2009 [PDF] [BibTeX]
 

Getting FLANN

The latest version of FLANN can be downloaded from here:

 
  • Version 1.8.0 (14 December 2012)
    Changes:

    • incremental addition and removal of points to/from indexes
    • more flexible index serialization
    • replaced TBB multi-threading support with OpenMP
    • bug fixes
    • NOTE: Due to changes in the library, the on-disk format of the saved indexes has changed and it is not possible to load indexes saved with an older version of the library.

If you don't want to compile FLANN from source you can try the binary installers prepared by the Point Cloud Library (PCL) project here (Ubuntu/Debian PPAWindows Installers and Mac OS X Universal Binary).

If you want to try out the latest changes or contribute to FLANN, then it's recommended that you checkout the git source repository: git clone git://github.com/mariusmuja/flann.git

If you just want to browse the repository, you can do so by going here.

 

System requirements

The FLANN library was developed and tested under Linux. A C++ compiler is required to build FLANN. The Python bindings require the presence of the Numerical Python (numpy) package.

 

Conditions of use

FLANN is distributed under the terms of the BSD License.

 

Questions/Comments

If you have any questions or comments please email them to: mariusm@cs.ubc.ca.

Please report bugs or feature requests using github's issue tracker.

from: http://www.cs.ubc.ca/research/flann/

快速近似最近邻搜索库 FLANN - Fast Library for Approximate Nearest Neighbors的更多相关文章

  1. Approximate Nearest Neighbors.接近最近邻搜索

    (一):次优最近邻:http://en.wikipedia.org/wiki/Nearest_neighbor_search 有少量修改:如有疑问,请看链接原文.....1.Survey:Neares ...

  2. facebook 相似性搜索库 faiss

    faiss 个人理解: https://github.com/facebookresearch/faiss 上把代码clone下来,make编译 我们将CNN中经过若干个卷积/激励/池化层后得到的激活 ...

  3. 近似最近邻算法-annoy解析

    转自https://www.cnblogs.com/futurehau/p/6524396.html Annoy是高维空间求近似最近邻的一个开源库. Annoy构建一棵二叉树,查询时间为O(logn) ...

  4. 如何快速构建React组件库

    前言 俗话说:"麻雀虽小,五脏俱全",搭建一个组件库,知之非难,行之不易,涉及到的技术方方面面,犹如海面风平浪静,实则暗礁险滩,处处惊险- 目前团队内已经有较为成熟的 Vue 技术 ...

  5. [转帖]运行时库(runtime library)

    运行时库(runtime library) https://blog.csdn.net/xitie8523/article/details/82712105 没学过这些东西 或者当时上课没听 又或者 ...

  6. 代码的坏味道(22)——不完美的库类(Incomplete Library Class)

    坏味道--不完美的库类(Incomplete Library Class) 特征 当一个类库已经不能满足实际需要时,你就不得不改变这个库(如果这个库是只读的,那就没辙了). 问题原因 许多编程技术都建 ...

  7. Glibc辅助运行库 (C RunTime Library): crt0.o,crt1.o,crti.o crtn.o,crtbegin.o crtend.o

    crt1.o, crti.o, crtbegin.o, crtend.o, crtn.o 等目标文件和daemon.o(由我们自己的C程序文件产生)链接成一个执行文件.前面这5个目标文件的作用分别是启 ...

  8. python_如何快速下载安装第三方库?

    如何快速下载安装第三方库? --通过 淘宝源  https://mirrors.aliyun.com/pypi/simple/ 本国网络进行快速安装 如何执行安装命令? pip install Dja ...

  9. sklearn:最近邻搜索sklearn.neighbors

    http://blog.csdn.net/pipisorry/article/details/53156836 ball tree k-d tree也有问题[最近邻查找算法kd-tree].矩形并不是 ...

随机推荐

  1. 黑马程序员_java基础笔记(09)...HTML基本知识、CSS、JavaScript、DOM

    —————————— ASP.Net+Android+IOS开发..Net培训.期待与您交流! —————————— 基本标签(a.p.img.li.table.div.span).表单标签.ifra ...

  2. 000 Excel获取数据

    1.目标网址 http://data.10jqka.com.cn/funds/ggzjl/field/zjjlr 二:需求一 1.需求 爬单个页面的数据 2.变化网址 http://data.10jq ...

  3. java把html标签字符转换成普通字符(反转换成html标签)

    package net.jasonjiang.web; import org.junit.Test; import org.springframework.web.util.HtmlUtils; /* ...

  4. JAVAEE——SSH项目实战05:用户注册、登陆校验拦截器、员工拜访客户功能和MD5加密

    作者: kent鹏 转载请注明出处: http://www.cnblogs.com/xieyupeng/p/7170519.html 一.用户注册   显示错误信息到页面上的另一种方法: public ...

  5. C# NPOCO 轻量级ORM框架(进阶)

    继续翻译NPOCO wiki. 这篇将home上 下面的几个页面翻译. wiki地址:https://github.com/schotime/NPoco/wiki 上一篇: http://www.cn ...

  6. QT学习笔记5:QMouseEvent鼠标事件简介

    一.QMouseEvent的详细描述 首先请注意,Qt中的QMouseEvent一般只涉及鼠标左键或右键的单击.释放等操作,而对鼠标滚轮的响应则通过QWheeEvent来处理. QMouseEvent ...

  7. 快速排序之C++实现

    快速排序之C++实现 一趟快速排序的算法是: 1)设置两个变量i.j,排序开始的时候:i=0,j=N-1: 2)以第一个数组元素作为关键数据,赋值给key,即key=A[0]: 3)从j开始向前搜索, ...

  8. [BZOJ4571][SCOI2016]美味(贪心+主席树)

    经典问题,按位贪心,每次需要知道的是”在这一位之前的位都以确定的情况下,能否找到这一位是0/1的数”,这就是在询问[L,R]内某个值域区间是否有数,主席树即可. #include<cstdio& ...

  9. Hdu4903 The only survival

    The only survival Time Limit: 40000/20000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Ot ...

  10. windows提权的几种姿势

    想象这种画面:你拿到了一台机器上Meterpreter会话了,然后你准备运行 getsystem 命令进行提权,但如果提权没有成功,你就准备认输了吗?只有懦夫才会认输.但是你不是,对吗?你是一个勇者! ...