快速近似最近邻搜索库 FLANN - Fast Library for Approximate Nearest Neighbors
What is FLANN?
FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces. It contains a collection of algorithms we found to work best for nearest neighbor search and a system for automatically choosing the best algorithm and optimum parameters depending on the dataset.
FLANN is written in C++ and contains bindings for the following languages: C, MATLAB and Python.
News
- (14 December 2012) Version 1.8.0 is out bringing incremental addition/reamoval of points to/from indexes
- (20 December 2011) Version 1.7.0 is out bringing two new index types and several other improvements.
- You can find binary installers for FLANN on the Point Cloud Library project page. Thanks to the PCL developers!
- Mac OS X users can install flann though MacPorts (thanks to Mark Moll for maintaining the Portfile)
- New release introducing an easier way to use custom distances, kd-tree implementation optimized for low dimensionality search and experimental MPI support
- New release introducing new C++ templated API, thread-safe search, save/load of indexes and more.
- The FLANN license was changed from LGPL to BSD.
How fast is it?
In our experiments we have found FLANN to be about one order of magnitude faster on many datasets (in query time), than previously available approximate nearest neighbor search software.
Publications
More information and experimental results can be found in the following papers:
- Marius Muja and David G. Lowe: "Scalable Nearest Neighbor Algorithms for High Dimensional Data". Pattern Analysis and Machine Intelligence (PAMI), Vol. 36, 2014. [PDF] [BibTeX]
- Marius Muja and David G. Lowe: "Fast Matching of Binary Features". Conference on Computer and Robot Vision (CRV) 2012. [PDF] [BibTeX]
- Marius Muja and David G. Lowe, "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration", in International Conference on Computer Vision Theory and Applications (VISAPP'09), 2009 [PDF] [BibTeX]
Getting FLANN
The latest version of FLANN can be downloaded from here:
- Version 1.8.4 (15 January 2013)
Changes from 1.8.3:- Fixed memory leak and OpenMP compilation under MSVC
flann-1.8.4-src.zip (Source code)
User manual
Changelog
- Version 1.8.0 (14 December 2012)
Changes:- incremental addition and removal of points to/from indexes
- more flexible index serialization
- replaced TBB multi-threading support with OpenMP
- bug fixes
- NOTE: Due to changes in the library, the on-disk format of the saved indexes has changed and it is not possible to load indexes saved with an older version of the library.
If you don't want to compile FLANN from source you can try the binary installers prepared by the Point Cloud Library (PCL) project here (Ubuntu/Debian PPA, Windows Installers and Mac OS X Universal Binary).
If you want to try out the latest changes or contribute to FLANN, then it's recommended that you checkout the git source repository: git clone git://github.com/mariusmuja/flann.git
If you just want to browse the repository, you can do so by going here.
System requirements
The FLANN library was developed and tested under Linux. A C++ compiler is required to build FLANN. The Python bindings require the presence of the Numerical Python (numpy) package.
Conditions of use
FLANN is distributed under the terms of the BSD License.
Questions/Comments
If you have any questions or comments please email them to: mariusm@cs.ubc.ca.
Please report bugs or feature requests using github's issue tracker.
from: http://www.cs.ubc.ca/research/flann/
快速近似最近邻搜索库 FLANN - Fast Library for Approximate Nearest Neighbors的更多相关文章
- Approximate Nearest Neighbors.接近最近邻搜索
(一):次优最近邻:http://en.wikipedia.org/wiki/Nearest_neighbor_search 有少量修改:如有疑问,请看链接原文.....1.Survey:Neares ...
- facebook 相似性搜索库 faiss
faiss 个人理解: https://github.com/facebookresearch/faiss 上把代码clone下来,make编译 我们将CNN中经过若干个卷积/激励/池化层后得到的激活 ...
- 近似最近邻算法-annoy解析
转自https://www.cnblogs.com/futurehau/p/6524396.html Annoy是高维空间求近似最近邻的一个开源库. Annoy构建一棵二叉树,查询时间为O(logn) ...
- 如何快速构建React组件库
前言 俗话说:"麻雀虽小,五脏俱全",搭建一个组件库,知之非难,行之不易,涉及到的技术方方面面,犹如海面风平浪静,实则暗礁险滩,处处惊险- 目前团队内已经有较为成熟的 Vue 技术 ...
- [转帖]运行时库(runtime library)
运行时库(runtime library) https://blog.csdn.net/xitie8523/article/details/82712105 没学过这些东西 或者当时上课没听 又或者 ...
- 代码的坏味道(22)——不完美的库类(Incomplete Library Class)
坏味道--不完美的库类(Incomplete Library Class) 特征 当一个类库已经不能满足实际需要时,你就不得不改变这个库(如果这个库是只读的,那就没辙了). 问题原因 许多编程技术都建 ...
- Glibc辅助运行库 (C RunTime Library): crt0.o,crt1.o,crti.o crtn.o,crtbegin.o crtend.o
crt1.o, crti.o, crtbegin.o, crtend.o, crtn.o 等目标文件和daemon.o(由我们自己的C程序文件产生)链接成一个执行文件.前面这5个目标文件的作用分别是启 ...
- python_如何快速下载安装第三方库?
如何快速下载安装第三方库? --通过 淘宝源 https://mirrors.aliyun.com/pypi/simple/ 本国网络进行快速安装 如何执行安装命令? pip install Dja ...
- sklearn:最近邻搜索sklearn.neighbors
http://blog.csdn.net/pipisorry/article/details/53156836 ball tree k-d tree也有问题[最近邻查找算法kd-tree].矩形并不是 ...
随机推荐
- loadrunner 脚本中文乱码
loadrunner 脚本中文乱码 1.新建脚本--->选择协议(Http)-->选项-->高级-->选择“支持字符集”并点选“UTF-8”: 2.在回放脚本之前:Vuser- ...
- 第一个web程序(ServletRequest , ServletResponse)
一.ServletRequest 1.获取参数的方法(四种) > String getParameter(String name): 根据请求参数的名字, 返回参数值. 若请求参数有多个值(例如 ...
- 回文树练习 Part1
URAL - 1960 Palindromes and Super Abilities 回文树水题,每次插入时统计数量即可. #include<bits/stdc++.h> using ...
- ARM Linux 驱动Input子系统之按键驱动测试
上一篇已经谈过,在现内核的中引入设备树之后对于内核驱动的编写,主要集中在硬件接口的配置上了即xxxx.dts文件的编写. 在自己的开发板上移植按键驱动: 1.根据开发板的原理图 确定按键的硬件接口为: ...
- java-Excel导出中的坑
在Excel导出过程中,若遇到合并单元格样式只有第一行合并,而下面要合并的行没有边框显示. 一般问题出在将单元格样式设置与合并单元格放在同一个循环中导致. 以下为一个完整版的demo以供参考 定义边框 ...
- [leetcode sort]147. Insertion Sort List
Sort a linked list using insertion sort. 利用插入排序对一个链表进行排序 思路和数组中的插入排序一样,不过每次都要从链表头部找一个合适的位置,而不是像数组一样可 ...
- QT学习笔记3:QT中语法说明
一.Qt 类中Q_OBJECT的作用 QObject 是所有Qt对象的基类. QObject 是Qt模块的核心.它的最主要特征是关于对象间无缝通信的机制:信号与槽.使用connect()建立信号到槽的 ...
- [POI2000]病毒 --- AC自动机
[POI2000]病毒 题目描述: 二进制病毒审查委员会最近发现了如下的规律: 某些确定的二进制串是病毒的代码. 如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的. 现在委员会已经找 ...
- [Luogu4724][模板]三维凸包(增量构造法)
1.向量点积同二维,x1y1+x2y2+x3y3.向量叉积是行列式形式,(y1z2-z1y2,z1x2-x1z2,x1y2-y1x2). 2.增量构造法: 1)首先定义,一个平面由三个点唯一确定.一个 ...
- ST-PUZZLE-2.0(一个益智游戏)
注:未经博主允许不得转载. 原文链接:http://www.cnblogs.com/Blog-of-Eden/p/9060300.html 和 https://i-m-eden.github.io/2 ...