混沌数学之离散点集图形DEMO
最近看了很多与混沌相关的知识,并写了若干小软件.混沌现象是个有意思的东西,同时混沌也能够生成许多有意思的图形.混沌学的现代研究使人们渐渐明白,十分简单的数学方程完全可以模拟系统如瀑布一样剧烈的行为。输入端微小的差别能够迅速放大到输出端,变成压倒一切的差别,这种现象被称为“对初始条件的敏感性”。
混沌现象其基本含义可以概括为:聚散有法,周行而不殆,回复而不闭。意思是说混沌轨道的运动完全受规律支配,但相空间中轨道运动不会中止,在有限空间中永远运动着,不相交也不闭合。浑沌运动表观上是无序的,产生了类随机性,也称内在随机性。混沌系统具有三个关键要素:一是对初始条件的敏感依赖性;二是临界水平,这里是非线性事件的发生点;三是分形维,它表明有序和无序的统一。混沌系统经常是自反馈系统,出来的东西会回去经过变换再出来,循环往复,没完没了,任何初始值的微小差别都会按指数放大,因此导致系统内在地不可长期预测。
这一节将先展示下混沌点集所生成的图形.这是一个生成混沌离散点集图形的DEMO,里面含有多个不同方程生成的混沌图形.在这个DEMO中,会看到由点集生成的看得出规律的及看不出规律的图形.



下载地址为:http://files.cnblogs.com/WhyEngine/chaos.7z
软件中有两种视口显示模式,三维和二维的.键盘O用于二者间的切换.
鼠标右键用于控制视口.
键盘G用于是否显示网格的切换
-------------------------------------------------------------
在这种离散点集的混沌图形中,使用迭代的方法生成顶点数据:
在中学课本中我们学过,一个一元函数,通常可以表示为: Y=f(x) 这里X是自变量,Y是因变量。
例如: Y=3X+1,如果X=1,那么Y=4;如果X=4,那么Y=13;总之,如果X被确定,那么相应的Y也被确定。
我们用一个抽象的符号F,来表示Y遵循X变化的因果关系。废话连篇的解释是:数字Y随数字X的变化而变化,Y由X来决定,决定的依据是“关系”F。
如果我们利用某个关系函数,比如Y=F(X),代入一个X算出一个Y,又将Y作为新的X再次计算下一个Y………如此不断,这种方法在数学上称为迭代,具体的表达式是: Xn =F(X n-1 ),n=1,2,3……..
学过程序的人一定知道"费波那齐数列",它算是比较典型的Xn =F(X n-1 )方程的例子。不过这种方程不是收敛的,所以它的图形几下就会爆表。
OK,那先帖下我写的有关这种离散方程对象的基类定义代码:
#define SET_GET_FLOAT_PROPERTY(name) \
void Set##name##(float v)\
{\
m_##name## = v;\
}\
float Get##name##() const\
{\
return m_##name##;\
} #define PI 3.14159265f // -------------------------------------------------------------------------------------- class DiscreteEquation
{
public:
DiscreteEquation()
{
m_StartX = 0.0f;
m_StartY = 0.0f; m_ParamA = 0.0f;
m_ParamB = 0.0f;
m_ParamC = 0.0f;
m_ParamD = 0.0f;
m_ParamE = 0.0f;
} // 求迭代值
virtual void IterateValue(float y, float z, float& outY, float& outZ) const = NULL; // 计算点集的Z轴坐标
static void CalculatePointsZ(void* curveVerticesPtr, unsigned int stride, unsigned int count, float minZ, float maxZ)
{
char* zPtr = (char*)curveVerticesPtr + *sizeof(float);
float zStep = (maxZ - minZ)/(count - ); for (unsigned int i = ; i < count; i++)
{
*(float*)zPtr = minZ + i*zStep;
zPtr += stride;
}
} // 计算点集的Y轴与X轴坐标
virtual void CalculatePointsXY(void* curveVerticesPtr, unsigned int stride, unsigned int count)
{
char* xPtr = (char*)curveVerticesPtr;
char* yPtr = (char*)curveVerticesPtr + sizeof(float); float y, x;
float nx, ny; x = m_StartX;
y = m_StartY; for (unsigned int i = ; i < count; i++)
{
*(float*)xPtr = x;
*(float*)yPtr = y; IterateValue(x, y, nx, ny); x = nx;
y = ny; xPtr += stride;
yPtr += stride;
}
} SET_GET_FLOAT_PROPERTY(StartX);
SET_GET_FLOAT_PROPERTY(StartY); SET_GET_FLOAT_PROPERTY(ParamA);
SET_GET_FLOAT_PROPERTY(ParamB);
SET_GET_FLOAT_PROPERTY(ParamC);
SET_GET_FLOAT_PROPERTY(ParamD);
SET_GET_FLOAT_PROPERTY(ParamE); virtual bool IsValidParamA() const {return false;}
virtual bool IsValidParamB() const {return false;}
virtual bool IsValidParamC() const {return false;}
virtual bool IsValidParamD() const {return false;}
virtual bool IsValidParamE() const {return false;} protected:
float m_StartX;
float m_StartY; float m_ParamA;
float m_ParamB;
float m_ParamC;
float m_ParamD;
float m_ParamE;
};
每一种混沌点集图形,在程序中都是DiscreteEquation对象的子类.
目前,我已经实现了以下几种混沌方程,将在后来的章节中一一介绍:
(3)混沌数学之Baker模型
(4)混沌数学之CircuitChaotic(二维离散电路混沌系统)
(9)混沌数学之Kent模型
(10)混沌数学之帐篷模型
(11)混沌数学之ASin模型
(12)混沌数学之Henon模型
混沌数学之离散点集图形DEMO的更多相关文章
- 混沌数学之CircuitChaotic(二维离散电路混沌系统)
相关软件参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/link?url=yg_gE7LUXCg2mXRp-ZZdfRXXIkcNj8YOhvN7 ...
- 混沌数学之logistic模型
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...
- 混沌数学之ASin模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...
- 混沌数学之Kent模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...
- 混沌数学之Feigenbaum模型
1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系.这个数大约是4.669,它与π并列成为似乎在数学 ...
- 混沌数学之Standard模型
相关软件混沌数学之离散点集图形DEMO 相关代码: class StandardEquation : public DiscreteEquation { public: StandardEquatio ...
- 混沌数学之Arnold模型
相关软件混沌数学之离散点集图形DEMO 相关代码: class ArnoldEquation : public DiscreteEquation { public: ArnoldEquation() ...
- 混沌数学之Baker模型
相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/ac9b57ea172ded630b1cb65b.html class Ba ...
- 混沌数学之Henon模型
相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view ...
随机推荐
- mac 用密钥远程登陆
window远程登陆命令:mstsc A为本地主机(即用于控制其他主机的机器) ;B为远程主机(即被控制的机器Server), 假如ip为192.168.60.110;A和B的系统都是Linux 在A ...
- Jersey入门二:运行项目
1.项目有了,在终端窗口进入项目的根目录(即 \simple-service ) 2.现在先测试运行下: mvn clean test  项目将会被编译,并且进行单元测试  上面可以看看到测试通过 ...
- Logstash 本地安装plugin
plugin的gems仓库 下载地址:仓库地址 1.安装ruby环境 yum install ruby yum install rubygems 2.下载插件包 下载插件的方式有多种 2.1 wget ...
- 安卓RecylerView嵌套和事件处理
最近遇到了一个需求:RecylerView的某一项为listView,即listView嵌套,且要求内部ListView可以滑动,高度固定. 如果直接简单的写完,会发现有两个问题: 1.内部listV ...
- IDEA导入eclipse项目并部署运行完整步骤(转发)
首先说明一下:idea里的project相当于eclipse里的workspace,而idea里的modules相当于eclipse里的project 1.File-->Import Proje ...
- windows上springboot打war部署tomcat小记
web项目,需要部署到云主机里去,现在windows里试一下. springboot项目,主要流程就只是打成war包后扔到tomcat里去,但是由于是springboot项目,有一些需要注意的地方,这 ...
- 美团外卖iOS多端复用的推动、支撑与思考
背景 美团外卖2013年11月开始起步,随后高速发展,不断刷新多项行业记录.截止至2018年5月19日,日订单量峰值已超过2000万,是全球规模最大的外卖平台.业务的快速发展对技术支撑提出了更高的要求 ...
- JDK源码分析(五)——HashSet
目录 HashSet概述 内部字段及构造方法 存储元素 删除元素 包含元素 总结 HashSet概述 从前面开始,已经分析过集合中的List和Map,今天来介绍另一种集合元素:Set.这是JDK对 ...
- [Luogu4724][模板]三维凸包(增量构造法)
1.向量点积同二维,x1y1+x2y2+x3y3.向量叉积是行列式形式,(y1z2-z1y2,z1x2-x1z2,x1y2-y1x2). 2.增量构造法: 1)首先定义,一个平面由三个点唯一确定.一个 ...
- 【线段树】【扫描线】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem A. Donut
题意:平面上n个点,每个点带有一个或正或负的权值,让你在平面上放一个内边长为2l,外边长为2r的正方形框,问你最大能圈出来的权值和是多少? 容易推出,能框到每个点的 框中心 的范围也是一个以该点为中心 ...