(2018浙江省赛9题)
设$x,y\in R$满足$x-6\sqrt{y}-4\sqrt{x-y}+12=0$,求$x$的范围______


解答:
$x+12=6\sqrt{y}+4\sqrt{x-y}$
注意到:$6\sqrt{y}+4\sqrt{x-y}\le\sqrt{(6^2+4^2)(y+x-y)}=\sqrt{52x}$且
$6\sqrt{y}+4\sqrt{x-y}\ge4(\sqrt{y}+\sqrt{x-y})\ge4\sqrt{x}$
故$4\sqrt{x}\le x+12\le\sqrt{52x}$得$x\in[14-2\sqrt{13},14+2\sqrt{13}]$

评:一个不等式只能消灭一个最值,求范围就需要两边两个不等式。

练习:

若实数$x,y$满足$x-4\sqrt{y}=2\sqrt{x-y}$,求$x$的范围____
答案:$x=0\vee 4\le x\le20$

相应的技巧可以看MT【68】

MT【146】一边柯西,一边舍弃的更多相关文章

  1. MT【68】一边柯西一边舍弃

    求$\sqrt{x-5}+\sqrt{24-3x}$的最值. 通常考试时会考你求最大值,常见的方式有三角代换,这里给如下做法: 证明:$\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x- ...

  2. MT【62】柯西求三角值域

    求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...

  3. MT【124】利用柯西求最值

    已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围___ ...

  4. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  5. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  6. tc 146 2 BridgeCrossing(n人过桥问题)

    SRM 146 2 1000BridgeCrossing Problem Statement A well-known riddle goes like this: Four people are c ...

  7. tc 146 2 RectangularGrid(数学推导)

    SRM 146 2 500RectangularGrid Problem Statement Given the width and height of a rectangular grid, ret ...

  8. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

随机推荐

  1. ESP8266/ESP32模块晶振频偏调试

    ESP8266/ESP32模块晶振频偏调试 !> 前提:晶振频偏调试是需要仪器设备的支持才能完成的. 测试环境:IQ2010综合测试仪 本文仅记录有关频偏调试的主要内容,其余不在赘述. IQ20 ...

  2. 新特性:postgresql的vacuum漫谈

    文章出处:来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31556440/viewspace-2375109/ 前言 即便是从数据库特性,SQL功能性等方面,Pos ...

  3. Spring Cloud(二):服务注册与发现 Eureka【Finchley 版】

    Spring Cloud(二):服务注册与发现 Eureka[Finchley 版]  发表于 2018-04-15 |  更新于 2018-05-07 |  上一篇主要介绍了相关理论,这一篇开始我们 ...

  4. Docker配置

    Docker基本配置 1.安装 在ubuntu下面执行 wget -qO- https://get.docker.com/ | sh 命令安装Docker. 如果命令的方式无法安装,也可以使用apt- ...

  5. Elasticsearch Java client(ES Client 简介、Java REST Client、Java Client、Spring Data Elasticsearch)

    elasticsearch系列七:ES Java客户端-Elasticsearch Java client(ES Client 简介.Java REST Client.Java Client.Spri ...

  6. vue 组件-父组件传值给子组件

    父组件通过属性,传值给子组件,子组件通过,props数组里的名称来接受父组件传过来的值. HTML部分: <div id="app"> <tmp1 :parent ...

  7. AI入门课程资源

    企业 kaggle https://www.kaggle.com/learn/overview Google   介绍 https://developers.google.cn/machine-lea ...

  8. 【RL系列】Multi-Armed Bandit问题笔记

    这是我学习Reinforcement Learning的一篇记录总结,参考了这本介绍RL比较经典的Reinforcement Learning: An Introduction (Drfit) .这本 ...

  9. mpstat命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/ggjucheng/archive/2013/01/13/2858775.html 简介 mpstat是Multipro ...

  10. 20145214 《网络对抗技术》 MSF基础应用

    20145214 <网络对抗技术> MSF基础应用 1.实验后回答问题--用自己的话解释什么是exploit,payload,encode 如果把MSF比作一把枪的话,payload应该是 ...