(2018浙江省赛9题)
设$x,y\in R$满足$x-6\sqrt{y}-4\sqrt{x-y}+12=0$,求$x$的范围______


解答:
$x+12=6\sqrt{y}+4\sqrt{x-y}$
注意到:$6\sqrt{y}+4\sqrt{x-y}\le\sqrt{(6^2+4^2)(y+x-y)}=\sqrt{52x}$且
$6\sqrt{y}+4\sqrt{x-y}\ge4(\sqrt{y}+\sqrt{x-y})\ge4\sqrt{x}$
故$4\sqrt{x}\le x+12\le\sqrt{52x}$得$x\in[14-2\sqrt{13},14+2\sqrt{13}]$

评:一个不等式只能消灭一个最值,求范围就需要两边两个不等式。

练习:

若实数$x,y$满足$x-4\sqrt{y}=2\sqrt{x-y}$,求$x$的范围____
答案:$x=0\vee 4\le x\le20$

相应的技巧可以看MT【68】

MT【146】一边柯西,一边舍弃的更多相关文章

  1. MT【68】一边柯西一边舍弃

    求$\sqrt{x-5}+\sqrt{24-3x}$的最值. 通常考试时会考你求最大值,常见的方式有三角代换,这里给如下做法: 证明:$\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x- ...

  2. MT【62】柯西求三角值域

    求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...

  3. MT【124】利用柯西求最值

    已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围___ ...

  4. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  5. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  6. tc 146 2 BridgeCrossing(n人过桥问题)

    SRM 146 2 1000BridgeCrossing Problem Statement A well-known riddle goes like this: Four people are c ...

  7. tc 146 2 RectangularGrid(数学推导)

    SRM 146 2 500RectangularGrid Problem Statement Given the width and height of a rectangular grid, ret ...

  8. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

随机推荐

  1. javascript实现对html便签等字符的转义

    参考链接:https://www.jb51.net/article/152700.htm 请访问以上链接. 本人纯搬迁,防止原作者删除. <script> var HtmlUtil = { ...

  2. linux上网络问题

    一.网络连接失败,不能访问 1.现象描述 network 服务不能启动, ping不通, Device not managed by NetworkManager or unavailable 2.n ...

  3. Azure web site和web job的config文件加密方式

    1.分析 由于Azure Web AppService平台的特殊性,所以在C#中原先的config加密方法DataProtectionConfigurationProvider和RSAProtecte ...

  4. Spark概述及集群部署

    Spark概述 什么是Spark (官网:http://spark.apache.org) Spark是一种快速.通用.可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010 ...

  5. Sony深度学习框架 - Neural Network Console - 教程(1)- 原来深度学习可以如此简单

    “什么情况!?居然不是黑色背景+白色文字的命令行.对,今天要介绍的是一个拥有白嫩的用户界面的深度学习框架.” 人工智能.神经网络.深度学习,这些概念近年已经涌入每个人的生活中,我想很多人早就按捺不住想 ...

  6. PPIO去中心化存储的了解和记录

    目录 介绍 FileCoin P2P技术给去中心化云存储的好处 剩余资源的再次使用 市场竞争会激发民间的智慧 PPIO的2种冗余模式 全副本模式 纠删副本模式 为什么PPIO要设计支付代理节点? 一些 ...

  7. Spring Boot + MyBatis + Pagehelper 配置多数据源

    前言: 本文为springboot结合mybatis配置多数据源,在项目当中很多情况是使用主从数据源来读写分离,还有就是操作多库,本文介绍如何一个项目同时使用2个数据源. 也希望大家带着思考去学习!博 ...

  8. plsql 不修改tnsnames.ora文件

    PLSQL 不修改tnsname直接连数据库的方式在PLSQL的Database中直接输入192.168.1.6:1521/VP.其中192.168.1.6为数据库的IP:1521为数据库端口:VP为 ...

  9. 浏览器差异bug汇总(js篇)

    获取滚动条高度 var scrollTop = document.body.scrollTop || document.documentElement.scrollTop; safari浏览器时间函数 ...

  10. iOS应用程序内打开指定qq聊天、给某人打电话

    -(void)btn2Clik { UIWebView *webView = [[UIWebView alloc] initWithFrame:CGRectZero]; NSURL *url = [N ...