POJ 1966 Cable TV Network 【经典最小割问题】
Description
n个点的无向图,问最少删掉几个点,使得图不连通
n<=50 m也许可以到完全图?
Solution
最少,割点,不连通,可以想到最小割。
发现,图不连通,必然存在两个点不连通。
枚举源点汇点,要让源点汇点不连通。源点汇点不能割掉
网络建图:
为了割的是边,所以要点转化成边。
对于每个x,建立x'=x+n,对于不是S、T的点(因为S、T不能割掉),x向x’连一条边权为1的边
对于原图的边e(x,y) x’->y 连接inf的边,y'->x连接inf的边。
边权保证割的是点,不是边。
x'->y连边保证,想走这条边,必须经过x。
源点汇点不唯一,所以要n^2枚举。
但是要保证S,T不直接相连,否则不可能分开。
(如果钦定0是源点,枚举汇点的话,可以hack掉
假设最优解必须割掉0,那么就ans大了
但是数据水)
然后每次重新建图。
跑dinic最小割,所有的最小割取min即可。
题目一些小坑:
1.图不连通?没关系,可以枚举得到最小割为0
2.m=0,同上
3.如果完全图?没有S、T满足不直接相邻,那么一定就是n
fl记录一下有没有dinic过即可。
4.n=1?同上fl可以判断。
我犯得错误:还是没有注意到点数拆点后是2*n的事实,开始hd[50]开小了,改成hd[100]才行的。
图中的实际点,和创造的虚拟点的数量要弄清楚。(话说不是RE而是WA?)
Code
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<queue>
#define numb ch-'0'
using namespace std;
const int N=;
const int inf=0x3f3f3f3f;
int n,m;
char ch;
void rd(int &x){
x=;
while(!isdigit(ch=getchar()));
for(x=numb;isdigit(ch=getchar());x=x*+numb);
}
struct node{
int nxt,to;
int w;
}e[*N*N+N];
int hd[*N],cnt=;
bool con[N][N];
void add(int x,int y,int z){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
e[cnt].w=z;
hd[x]=cnt;
} queue<int>q;
int d[*N];
int s,t; void pre(){
memset(hd,,sizeof hd);
cnt=;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(j==i) continue;
if(con[i][j]){ add(i+n,j,inf/);
add(j,i+n,);
}
}
if(i!=s&&i!=t) add(i,i+n,),add(i+n,i,);
}
}
bool bfs(){
while(!q.empty())q.pop();
memset(d,,sizeof d);
d[s+n]=;
q.push(s+n);
while(!q.empty()){
int x=q.front();q.pop();
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(!d[y]&&e[i].w){
d[y]=d[x]+;
q.push(y);
if(y==t) return ;
}
}
}
return ;
}
int lp=;
int dfs(int x,int flow){
if(x==t) return flow;
int rest=flow;
for(int i=hd[x];i&&rest;i=e[i].nxt){
int y=e[i].to;
if(d[y]==d[x]+&&e[i].w){
int k=dfs(y,min(rest,e[i].w));
if(!k) d[y]=;
rest-=k;
e[i].w-=k;
e[i^].w+=k;
}
}
return flow-rest;
}
int wrk(){
pre();
int ret=;
int flow;
while(bfs()){
while(flow=dfs(s+n,inf)) ret+=flow;
}
return ret;
}
int ans;
bool fl;
void clear(){
memset(hd,,sizeof hd);
cnt=;
memset(con,,sizeof con);
ans=inf;
fl=false;
}
int main()
{
int x,y;
while(scanf("%d",&n)!=EOF){
clear();
scanf("%d",&m);
for(int i=;i<=m;i++){
rd(x);rd(y);
x++;y++;
con[x][y]=con[y][x]=;
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(con[i][j]) continue;
fl=true;
s=i,t=j;
int tmp=wrk();
ans=min(ans,tmp);
}
}
if(!fl) ans=n;
printf("%d\n",ans);
}
return ;
}
这个题,体现了“点边转化”,“容量inf”的处理思想。
点边转化:把点的信息转移到边上,或者边信息转移到点上。
点变成边:拆点,两个点之间的边信息是点的信息。并且要保证,实际经过这个点,必须经过这个边。
一般从上面的点x'向下面y连边。
边变成点:把边拆成两个,中间加一个点,记录边的信息。
POJ 1966 Cable TV Network 【经典最小割问题】的更多相关文章
- POJ 1966 Cable TV NETWORK(网络流-最小点割集)
Cable TV NETWORK The interconnection of the relays in a cable TV net ...
- POJ 1966 Cable TV Network (最大流最小割)
$ POJ~1966~Cable~TV~Network $ $ solution: $ 第一眼可能让人很难下手,但本就是冲着网络流来的,所以我们直接一点.这道题我们要让这个联通图断开,那么势必会有两个 ...
- POJ 1966 Cable TV Network
Cable TV Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 4702 Accepted: 2173 ...
- POJ 1966 Cable TV Network(顶点连通度的求解)
Cable TV Network Time Limit: 1000MS Memory Limit: 30000K Total Submissi ...
- UVA-1660 Cable TV Network (最小割)
题目大意:给一张n个点.m条边的无向图,求最小点割集的基数. 题目分析:求无向图最小点割集的基数可以变成求最小割.考虑单源s单汇t的无向图,如果要求一个最小点集,使得去掉这个点集后图不再连通(连通分量 ...
- POJ 1966 Cable TV Network (点连通度)【最小割】
<题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见 >>> 本题是求点连通度, ...
- POJ 1966 Cable TV Network (无向图点连通度)
[题意]给出一个由n个点,m条边组成的无向图.求最少去掉多少点才能使得图中存在两点,它们之间不连通. [思路]回想一下s->t的最小点割,就是去掉多少个点能使得s.t不连通.那么求点连通度就枚举 ...
- poj 1966 Cable TV Network 顶点连通度
题目链接 给一个图, n个点m条边, 求至少去掉多少个点可以使得图不再联通.随便指定一个点为源点, 枚举其他点为汇点的情况, 跑网络流, 求其中最小的情况. 如果最后ans为inf, 说明是一个完全图 ...
- POJ 1966 Cable TV Network (算竞进阶习题)
拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...
随机推荐
- layui数据表格使用(一:基础篇,数据展示、分页组件、表格内嵌表单和图片)
表格展示神器之一:layui表格 前言:在写后台管理系统中使用最多的就是表格数据展示了,使用表格组件能提高大量的开发效率,目前主流的数据表格组件有bootstrap table.layui table ...
- exec命令详解
基础命令学习目录首页 原文链接: exec: 在bash下输入man exec,找到exec命令解释处,可以看到有”No new process is created.”这样的解释,这就是说exec命 ...
- fs - 文件系统
fs 模块提供了一些 API,用于以一种类似标准 POSIX 函数的方式与文件系统进行交互. 用法如下: const fs = require('fs'); 所有的文件系统操作都有异步和同步两种形式. ...
- 精通Python爬虫-03-狩猎大师
声明: 本系列文章原创于慕课网,作者秋名山车神,任何人不得以任何形式在不经作者允许的情况下,进行任何形式的印刷以及销售,转载需注明出处及此声明. 本系列文章更新至少每周一更,将涉及Python爬虫基础 ...
- 20172308 实验三《Java面向对象程序设计 》实验报告
20172308 2017-2018-2 <程序设计与数据结构>实验三报告 课程:<程序设计与数据结构> 班级: 1723 姓名: 周亚杰 学号:20172308 实验教师:王 ...
- Chapter 6 面向对象基础
面向对象=对象+类+继承+通信,如果一个软件系统采用这些概念来建立模型并给予实现,那么它就是面向对象的.面向对象的软件工程方法是面向对象方法在软件工程领域的全面运用涉及到从面向对象分析.面向对象设计. ...
- binding(转)
1,Data Binding在WPF中的地位 程序的本质是数据+算法.数据会在存储.逻辑和界面三层之间流通,所以站在数据的角度上来看,这三层都很重要.但算法在3层中的分布是不均匀的,对于一个3层结构的 ...
- shiro+springmvc 都使用缓存
基于涛哥shiro案例16 的这时候要配置service方法的缓存 在spring-config.xml添加 <context:annotation-config /> <cache ...
- MapReduce编程之Semi Join多种应用场景与使用
Map Join 实现方式一 ● 使用场景:一个大表(整张表内存放不下,但表中的key内存放得下),一个超大表 ● 实现方式:分布式缓存 ● 用法: SemiJoin就是所谓的半连接,其实仔细一看就是 ...
- 项目总结之关于JQuery一些常用的函数
最近做一个小的项目,用到了很多关于jquery函数,下面简单总结下自我感觉比较常用的一些函数. jquery函数--Hide函数用法 jquery中,hide函数用于实现层的消失,相反,show函数用 ...